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FOREWORD
-----------------------------------------------------

This is the Phase 1 Final Report of the Scheduling Language

and Algorithm Development Study performed by Martin Marietta

Corporation, Denver Division, under Contract NAS9-13616. The pur-

pose of this study was to conceive and specify a high-level com-

puter programming language and a program library to be used in

writing programs for scheduling complex systems such as the Space

Transportation System. This report is presented in three volumes

plus an appendix:

Volume I - Study Summary and Overview

Volume II - Use of the Basic Language and Module Library

Volume III - Detailed Functional Specification for the Basic

Language and the Module Library

Appendix - Study Approach and Activity Summary

Volume I summarizes the objectives and requirements of the

study and discusses the "why" behind the objectives and require-

ments. Unique results achieved during the study or unique fea-

tures of the specified language and program library are then de-

scribed and related to the "why" of the objectives and require-

ments. Finally, a description of the significance of study re-

sults, in terms of expected benefits, is provided.

Volume II summarizes the capabilities of the specified sched-

uling language and the program module library. It is written with

the potential user in mind and, therefore, provides maximum in-

sight on how the capabilities will be helpful in writing scheduling
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programs. Simple examples and illustrations are provided in

Volume II to assist the potential user in applying the capabilities

of his problem.

The detailed functional specifications presented in Volume III

are the formal product of Phase 1. These specifications are written

as requirements for software implementation of the language and the

program modules, and are aimed at a specific audience.

A separate Appendix summarizes the analyses, describes the

approach used to identify and specify the capabilities required

in the basic language, and presents results of the algorithm and

problem modeling analyses used to define specifications for the

scheduling module library. The appendix is directed toward the

reader who is interested in how the study conclusions and results

were reached.
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1.0 INTRODUCTION
-- -- -- ----- -- '- - ----- -------- -- -- - -- - -- -- - -- --'-

Volume II presents both PLANS (Programming Language.for Allo-

cation and Network Scheduling) and the programming library modules

from the user's viewpoint. It describes capabilities and gives

many specific examples to provide insight to the potential use-

fulness of the language for building scheduling and resource allo-

cation software.

This volume is intended to provide a basic understanding of

the nature and use of PLANS. It is not a detailed user guide such

as might be used by a programmer for actual coding. While this

document is meant to serve that function on an interim basis, a

detailed user guide will be produced as a part of the PLANS imple-

mentation (Phase II) effort. The discussion in this volume is not

meant to serve as a functional specification of PLANS. The de-

tailed functional specifications form a part of Volume III of this

report.

Section 2.0 of this volume describes the characteristics of

the PLANS language itself. Section 3.0 discusses the character-

istics of scheduling problems and how they can be modeled. The

framework described is referred to here as a generic scheduling

operations model. The application of various library modules in-

cluding solution algorithms is discussed in the context of this

model. Illustrative examples are included in Section 4.0 where

both modeling and coding are presented.
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2.0 USE OF THE PLANS LANGUAGE
---------------------------------------------------------------

PLANS (Programming Language for Allocation and Network Sched-

uling) is a computer programming language designed for use in the

expression of procedures for solving schedule construction and

resource allocation problems. It is a high-level language in-

tended to allow easy, direct expression of the kinds of functions

frequently found in scheduling programs and algorithms. The close

correspondence between basic functional operations and PLANS

statements is intended to allow the scheduling program designer

to easily accomplish for himself both initial programming and

program modification. A detailed discussion of these considera-

tions, together with the analytical results which caused PLANS to

take its current form, can be found in the appendix to this report.

2.1 BASIC LANGUAGE STRUCTURE AND STATEMENTS

For reasons outlined in the appendix, the basic program struc-

ture and syntax of PLANS are similar to those of PL/I. A brief de-

scription of their basic characteristics is given below. For a

more detailed introduction, see A Guide to PL/I for FORTRAN Users,

IBM Document SC20-1637-3. For detailed general information, see

IBM System/360 Operating System PL/I (F) Language Reference

Manual, IBM Document GC28-8201-4, and the corresponding Programmer's

Guide, GC28-6594, or other similar manuals.
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The basic structure of PLANS is a hierarchic block structure.

Groups of statements may be combined into logical blocks called

PROCEDURE blocks, BEGIN blocks, and DO-groups. These blocks are

preceded by PROCEDURE, BEGIN, or DO statements and followed by

END. These blocks may then be nested at will, yielding a hier-

archic structure such as that shown in Fig. 2.1-1.

Note in Fig. 2.1-1 that statements are terminated by semi-

colons and that statement labels are indicated by colons. PLANS,

like PL/I, is a free-format language with no card column re-

strictions for specific types of information. A statement may be

several cards long or, conversely, several statements may appear

on a card. Indentation has no significance to PLANS and can be

used as desired to improve program structure visibility.

A: PROCEDURE;
statement - al

statement - a2
B: BEGIN;

statement - bl
statement - b2

C: PROCEDURE;
statement - cl

statement - c2

D: DO;
statement - dl

statement - d2

E: BEGIN;
statement - el

statement - e2

END;
statement d3
END;

statement - c3
END;

statement - b3
END;

statement - a3
END;

Fig. 2.1-1
PLANS (and PL/I) Hierarchic Block

Program Structure

4



Procedure blocks correspond to main programs or subroutines.

If a procedure appears within another procedure (as PROCEDURE C

is within PROCEDURE A, for instance), it is executable only by

means of a CALL statement. Thus, if statement-b2 is not a CALL

or other transfer-of-control statement, it will be followed

logically by statement-b3, with transfer of control skipping a-

round PROCEDURE C. BEGIN blocks and DO-groups, on the other hand,

are executed in line and are for many practical purposes equiv-

alent to single statements.

Aside from the fact that block-structured languages'simplify

program.structure and may improve program readability considerably,

they also tend to increase the power.of the language by providing

a natural mechanism for treating a whole block of statements as

a logical entity. Thus, by way of simple example, the statements

SUM = 0;
IF K < 10

THEN DO J = 1 TO K;
SUM = SUM + J;
END;

sum the first K integers if, and only if, K < 10. Otherwise

SUM = 0.

It is a basic property of block-structured languages that

variables have global (rather than local) scope unless specified

otherwise. Thus, where a FORTRAN subroutine is written as a

separate entity from the calling-program and uses variables whose

names are meaningful only within the subroutine (i.e., names that

5



are local), the procedures (subroutines) of a hierarchic language

are usually nested within the calling program, and have access to

all its variables unless explicitly excluded.

When using a procedure as a subroutine, it is usually desirable

to pass a parameter list as part of the procedure call and return.

This can be explicitly accomplished in very much the same way as

in most languages, using statements of the form

CALL EVAL W(X1, Y1, Z1, W);

and

EVAL W: PROCEDURE(X, Y, Z, 1U);

where the names used for the parameters are free to vary between

the two statements. Incidentally, note use of the underline

( ) symbol. This, combined with a maximum name length of 31

characters for most purposes, allows one to use meaningful and

readable labels, variable names, etc (e.g., THISIS A READABLE NAME).

This has been a rather cursory treatment of the PLANS (PL/I)

program structure. While this structure is easy to use success-

fully, its more sophisticated ramifications clearly exceed the

scope of this volume. The reader is again referred to the PL/I

documents mentioned at the beginning of this section for further

details.

PLANS incorporates a fairly complete set of ordinary arith-

metic, transfer-of-control, and conditional and iterative state-

ments that are treated in essentially the same way they are used

in PL/I. Illustrative examples of these statements follow with

brief descriptions but without rigorous definition.
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PLANS uses conventional arithmetic assignment statements such

as

XVAR = (Y*3.0)-((Z**2)/26)*Y;

Conventional operator priorities and left-to-right performance

rules apply for the most part, so that the statement

XVAR = Y * 3.0 - Z**2/26*Y;

has the same meaning as the statement above.

Aside from the CALL statement, which has already been dis-

cussed, the only transfer-of-control capability required for most

purposes is the simple GO TO statement. This statement has the

form

GO TO A STATEMENT LABEL;

where A STATEMENT LABEL is a statement label, as

A STATEMENT LABEL: XVAR = Y*3.0-Z**2/26*Y;

Conditional statements are similar to those of PL/I and

therefore are a good deal more powerful than those familiar to

FORTRAN programmers. The IF...THEN...ELSE... syntax is used

(IF...THEN... is legal), and IF statements can be nested. No

parentheses are required around the conditional expression (after

"IF"). Thus, the following program segment is legal and behaves

in a way that should be familiar.

IF YIELD SIGN = 1
THEN IF TRAFFIC COMING = 1

THEN GO TO STOP;
ELSE GO TO GO;

ELSE IF STOP SIGN = 1
THEN GO TO STOP;
ELSE GO TO GO;

In addition to the noniterative DO-group shown in Fig. 2.1-1 and

7



the two special iteration statements that are peculiar to PLANS,

PLANS also uses two common forms of iterative DO statements.

The first of these is the usual delimited form

DO I = 1 TO 10;

or

DO I = 2 TO 20 BY 2;

or

DO I = (K-1)**2-14 TO A*B*C;

while the second is an open-ended form

DO WHILE (A*X**2<27);

In each of these forms, the condition is tested at the beginning

of the DO-group, rather than at the end, so that a DO-group

starting

DO I = 1 TO 0;

or

A = 20;
DO WHILE (A < 10);

would not be executed at all. Of course, the use of END to ter-

mirate the DO-group obviates the need to refer to a statement

label in the DO statement.

2.2 LABELED TREES

The principal difference between PLANS and most other pro-

gramming languages is that PLANS is oriented primarily toward the

manipulation of ordered, labeled tree structures. In preparation

for a discussion of the PLANS tree operations, this section will

define a labeled tree and establish both graphical and textual

conventions for representing such trees.
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Figure 2.2-1 illustrates a labeled tree, as well as our

graphical format for trees. The tree is, of course, a hierarchical

data structure. The branching points are called nodes, and the

root node is shown at the top. The nodes are represented graphic-

ally by circles. The name of the tree, in this case $PAYLOAD, is

shown above the root node. The dollar sign is a special character

used to identify tree names so the PLANS compiler can discriminate

them from variable names. Each node has a label (the character

string to the right of the node), but the label may be null. In

the figure, the only node shown with a null label is the root

node, but any node can conceivably have a null label.

The nodes exactly one level below a given node are called its

descendants. The root node of the tree in Fig. 2.2-1 has four

descendants. The node labeled LIFESCIENCE has two descendants,

which, in turn, are labeled WEIGHT and WINDOW. Nodes that have

descendants are called nonterminal nodes; nodes without descen-

dants are called terminal nodes. There are 11 terminal and 9 non-

terminal nodes in the figure. In addition to a label, a terminal

node has a value, which may be either a character string or a

numeric value. Values are shown lklow their terminal nodes. Like

labels, values may be null.

While the graphical format is convenient for displaying con-

ceptual tree structures and for demonstrating the effect of

specific PLANS statements, it is too cumbersome and rigid for

convenient use in the display of specific tree structures, espe-

cially large ones. For this purpose, the textual format is used.

9



$PAYLOAD

LIFESCIENCE TELESCOPE MANUFACTURING GEOPHYSICAL

WEIGHT WINDOW INDOW WINDOW LENGTH WEIGHT WINDOW

9000 18 8000

START END START END START END START EN

10 143 40 216 8 840 241 318

Fig. 2.2-1 A Labeled Tree



The tree of Fig. 2.2-1 is expressed in the form shown in Fig.

2.2-2. In this case, the structure is defined by the indentation

pattern, rather than by node-connecting lines. Each line of text

represents a node. The information occurring first on a line is

the node label, while the values of terminal nodes are separated

from the corresponding labels by a hyphen (-) character that is

surrounded by blanks. In order to allow rigorous definition of

tree structures in which some nodes have null labels, it is nec-

essary to employ a special convention for representing them. Null

$PAYLOAD
LIFESCIENCE

WEIGHT - 9000
WINDOW

START - 10
END - 143

TELESCOPE
WINDOW

START - 40
END - 216

MANUFACTURING
WINDOW

START - 8
END - 840

GEOPHYSICAL
LENGTH - 18
WEIGHT - 8000
WINDOW

START - 241
END - 318

Fig. 2.2-2 The Tree of Fig. 2.2-1 in Textual Format.
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labels are represented by a cent sign (¢). This convention is

occasionally employed in the graphical format, although it is

unnecessary there.

It can be seen in Fig. 2.2-2, that while numeric values are

given for terminal payload descriptor nodes, physical units are

not; i.e. 9000 is given for the weight and 10 for the window start

time of the lifescience payload, but no indication is given whether

these are pounds, kilograms, seconds, etc. The option exists to

specify these physical units in the application program logic,

in which case the information in the example is adequate. The

alternative is to enter physical unit values as character string

input data in the tree structure textual format. For readability,

a shorthand format has been adopted to present the value of phy-

sical units, thus

$PAYLOAD
LIFESCIENCE

WEIGHT - 9000
- LBS

WINDOW
START - 10

- HRS
END - 143

- HRS

This is a shorthand form in the sense that the numeric and char-

acter string data are properly different values for two different

null labeled nodes, that is

$PAYLOAD
LIFESCIENCE

WEIGHT
¢ - 9000
¢ - LBS

12



Entry of multiple values for a labeled node, as in this example,

would require the inclusion of logic within the application pro-

gram, to recognize the character string node values and associate

them correctly with the numeric node values.

An additional convention, which has been adopted, is the use

of parenthesized labels and values to represent variable data in

the definition of a particular tree application. If a label or

value occurs without parentheses, it is assumed that the character

string shown is literally present in the tree. For example, the

tree

$PAYLOAD
LIFESCIENCE

WEIGHT - 9000
LENGTH - 27

contains only actual values and labels. But if one wanted to

show only the nature of the information contained in this tree,

the following form might be used.

$PAYLOAD
(PAYLOAD NAME)

(CHARACTERISTIC) - (VALUE)
(CHARACTERISTIC) - (VALUE)

(PAYLOAD NAME)

2.3 PLANS TREE ACCESS MECHANISMS

PLANS provides the programmer with a number of simple and

powerful means of accessing and updating the information con-

tained in the labeled tree structures discussed in the previous

13



section. These methods are based on the notion that the programmer

can "point" to a particular tree node by specifying which tree it

is in, which descendant of the root node it is under, which de-

scendant of that node it is under, etc. (Remember that the term

"descendant," as used here, means inmmediate descendant.)

Suppose, for example that information about the telescope pay-

load in Fig. 2.2-1 is desired. Because the name of the tree is

$PAYLOAD and the name ot the payload in question is TELESCOPE,

the programmer might write $PAYLOAD.TELESCOPE to access this in-

formation. This is an example of qualification by label.

Alternatively, qualification can be done by position, using

the familiar subscript notation. As was mentioned before, but not

explained in detail, PLANS trees are ordered trees; that is, the

ordering of the descendants of a node is significant. Unless

action is taken to change or reorder a tree structure, the order

remains constant. In the present example, since TELESCOPE is the

second payload, information about that payload can be referred to

as $PAYLOAD(2), as well as $PAYLOAD.TELESCOPE. Examples of simple

qualification by label and by subscript are shown in Fig. 2.3-1.

Figure 2.3-1 also illustrates the use of one of two keywords,

LAST and NEXT, which have special meaning when used as subscripts

in PLANS tree access and update statements. LAST allows the pro-

grammer to refer to the last information appended below a given

node without knowing either the label or the index of the node he

wants. Thus, for example $PAYLOAD(LAST) refers to the geophysical

payload in the figure. Similarly, NEXT refers to the next subnode

14



LIFESCIENCEI TELESCOPE MANUFACTURING GEOPHYSICAL

I i /

I II

WEIGHT WINDOW WINDOW WINDOW LENGTH WEIGHT WINDOW

9000 18 8000

I \

START END START END START END START END'

10 143 40 216 8 840 241 318

$PAYLOAD.TELESCOPE $PAYLOAD (LAST)
(OR.$PAYLOAD (2) ) (OR $PAYLOAD.GEOPHYSICAL

OR $PAYLOAD (4))

Fig. 2.3-1 Basic Tree Access Mechanisms



after the last one appended below a given node. The reference

is therefore to a node that does not yet exist. NEXT is mean-

ingful only in the context of updates, but is mentioned here be-

cause of its association with LAST.

Access qualified by label or by subscript can be continued

to any desired depth in the tree, and labels and subscripts can

be mixed at will. Consider for example, the node with value 216

in Fig. 2.3-1. Several ways of "pointing" to the node are:

$PAYLOAD.TELESCOPE.WINDOW.END
$PAYLOAD.TELESCOPE.WINDOW(2)
$PAYLOAD.TELESCOPE(1).END
$PAYLOAD(2).WINDOW(2)
$PAYLOAD.TELESCOPE(LAST)(LAST)
$PAYLOAD(2)(1)(2)

References to particular nodes may be intended to refer to a

tree substructure (i.e., the node "pointed" to, including its

label, and anything below that node in the tree) or to a value.

The meaning of a tree reference depends on the context in which

the reference occurs. Thus, a statement which commands that a

node be "pruned" (i.e., deleted from its tree) is obviously a

structure reference, while a statement like

WINDOWDURATION=$PAYLOAD(2).WINDOW.END

-$PAYLOAD(2).WINDOW.START;

refers, because of its arithmetic nature, to the values (216 and

40) of the two tree nodes used in the statement.

Tree relational expressions are a source of considerable

power in PLANS. These are logical (Boolean) expressions that have

a value of TRUE or FALSE. These expressions are analogous to
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arithmetic relational expressions (e.g., XVAR < YVAR) and are

usable in IF...THEN...ELSE statements.

PLANS tree relations include IDENTICAL TO, SUBSET OF,

and SUPERSET OF. The expression $TREE_A IDENTICAL TO $TREE_B

has the value TRUE if, and only if, the entire substructure of

$TREE_A (or the value of $TREE_A , if it has no descendants) is

identical to that of $TREEB with respect to structure and order,

labels, and values. The expression $TREE_A SUBSET OF $TREE_B

has the value TRUE if, and only if, for each first-order sub-

structure of $TREE A , there exists an identical first-order

substructure in $TREEB . The expression $TREEA SUPERSET OF

$TREE B is equivalent to $TREEB SUBSET OF $TREE_A

In each of the sample expressions above, any node reference

can be substituted for $TREE_A and $TREE_B, and these Boolean

expressions can be combined with Boolean AND (&) and OR (I)

operators in the usual fashion. Thus, one can write a statement

like

IF $PAYLOAD(I)SUBSET OF $CANDIDATES
& $PAYLOAD(I).WINDOW.END > LAUNCHDATE
THEN GO TO THIS PAYLOAD OK;

Note that this statement contains node references that are

structural and a node reference that is arithmetical.

Tree relational expressions are most useful in conjunction

with two keywords, FIRST and ALL, which have special meaning

when used as label qualifiers in PLANS tree node references.

$PAYLOAD.FIRST, when used by itself, is a legal expression with

the same meaning as $PAYLOAD(1). The important usage of FIRST
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is in an expression like $PAYLOAD.FIRST:(CONDITION). This ex-

pression means "find the first descendant of the node $PAYLOAD

that satisfies the condition in parentheses," where the condition

is a Boolean expression. An example is shown in Fig. 2.3-2. The

operation desired by the programmer might be stated, "find the

first descendant of $PAYLOAD whose launch window duration is

greater than 150 days." Expressed in more procedural terms, the

operation might be, "Consider each element (i.e., each descendant

of $PAYLOAD) in turn. Calculate the launch window duration of

the element being considered. If greater than 150, proceed as if

it had been referenced by name." Note the correspondence of the

use of the word ELEMENT in this procedural description and in the

corresponding tree node reference, $PAYLOAD.FIRST:(ELEMENT.WINDOW.

END - ELEMENT.WINDOW.START > 150)

The label qualifier ALL works in a similar manner, but rep-

resents a reference to more than one descendant. Thus, if

$PAYLOAD refers to the tree structure of Fig. 2.3-1, then

$PAYLOAD.ALL refers to the portion of that structure indicated

in Fig. 2.3-3. Writing $PAYLOAD.ALL is equivalent to "pointing"

to $PAYLOAD(1), $PAYLOAD (2),..., $PAYLOAD(LAST), each in turn.

$TREE.ALL is therefore a way of referring to the substructure

of a node without including the node itself.

It should be noted that the position of a label or sub-

script qualifier in a PLANS tree node reference always corres-

ponds to the level of the node in the structure itself. (A so-

phisticated reader who has looked at a PLANS program that uses

18



$PAYLOAD

LIFESCIENCEJ TELESCOPE MANUFACTURING GEOPHYSICAL

/ I

WEIGHT WINDOW WINDOW WINDOW LENGTH WEIGHT WINDOW

9000 18 8000

START END START END START END START END

I I
10 143 L4 0  216 8 840 241 318

$PAYLOAD. FIRST:(ELEMENT.WINDOW.END-ELEMENT.WINDOW.START>150)

Fig. 2.3-2 Conditional Access Using Qualifier ".FIRST"



to.) $PAYLOAD

LIFESCIENCE TELESCOPE MANUFACTURING GEOPHYSICALSI
WEIGHT WINDOW WINDOW WINDOWLENGTH WEIGHT WINDOW

9000 18 8000

START END START END START END START END

10 143 40 216 8 840 241 318

$PAYLOAD.ALL

Fig. 2.3-3 Use of Label Qualifier ".ALL"



subroutines may detect an apparent exception to this statement.

Please be assured that it is not an exception, but merely a ques-

tion of tree name scope.) While this correspondence of position

is clear in a tree node reference like $PAYLOAD(2).WINDOW.END, it

will be helpful to the user to keep in mind that it also applies

to the use of FIRST and ALL. Thus $PAYLOAD.ALL is a reference

to one or more nodes that are one level beZow $PAYLOAD

As in the case of FIRST, ALL is most usefully employed in

expressions like $PAYLOAD.ALL:(condition), where the condition is

a Boolean expression. In this case, instead of a single node, the

reference is to all the subnodes of a particular node that satisfy

the stated condition. An example is shown in Fig. 2.3-4. This

"all such that" capability is very powerful as a means of filter-

ing sets of elements for a particular set of characteristics.

Sometimes the programmer needs to refer to the label on a

node rather than to its value or the structure it represents.

For this purpose, PLANS provides the special function LABEL.

For example, the reference LABEL($PAYLOAD(3)) applied to the

tree of Fig. 2.3-1 yields the character string MANUFACTURING.

A second special function of PLANS is NUMBER. This function

returns the number of descendants possessed by a given node.

Thus, the expression NUMBER($PAYLOAD) applied to the tree of

Fig. 2.3-1 yields the numerical value 4.

A particularly important tree access feature is indirect

referencing. Unless the programmer resorts to very expensive

iterative tree searching there is no way, without indirect
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$PAYLOAD

LIFESCIENCE TELESCOPE MANUFACTURING GEOPHYSICAL

I I
I I

WEIGHT WINDOW WINDOW WINDOW LENGTH WEIGHT WINDOW

9000 18 8000

START END START END START END START END

10 143 [40 216 840 241 318

$PAYLOAD .ALL:(ELEMENT. WINDOW. END-ELEMENT. WINDOW. START>150)

Fig. 2.3-4 Conditional Access Using Qualifier ".ALL"



referencing, that he can write a program to schedule shuttle

flights that do not contain words like PAYLOAD, ORBITER, etc. In

order to access information about these resources, he wants to

use them as labels for qualified access or, conceivably, as tree

names. What is needed is a capability that allows the character-

istics of a problem to reside in the data, rather than the pro-

gram. Only in this way can a program that schedules shuttle flights

also. schedule machine shop operations. What the programmer needs

is the capability to read in, as data, the labels he will use to

access particular tree nodes. Accordingly, PLANS allows the kind

of indirect referencing illustrated in Fig. 2.3-5. What the pro-

grammer is attempting to do in this illustration is to access in-

formation about the resource types named in a tree called

$RESOURCE_REQUIREMENTS . He therefore writes the tree node expres-

sion $RESOURCE_INFO.#($RESOURCE_REQUIREMENTS(1)) to access infor-

mation about the first such resource type. This expression might

be read, "the descendant of the node $RESOURCE_INFO whose label is

the character string found as the current value of the node

$RESOURCE_REQUIREMENTS(1)". The programmer is in effect saying,

"Behave as if I had written $RESOURCEINFO.ORBITER, but allow me

the freedom to use some other label than ORBITER by changing the

data, without changing the program.
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$RESOURCE INFO $RESOURCE REQUIREMENTS

000 000
OO--OOO

PAYLOAD ORBITER / NAME NAME

I
ORBITER I MECHANIC
-/J

$RESOURCEINFO.#($RESOURCE_REQUIREMENTS(1))

$RESOURCE INFO.ORBITER

Fig. 2.3-5 Indirect Referencing

2.4 PLANS TREE UPDATE MECHANISMS

The basic PLANS tree update mechanism is the tree assignment

statement. The reader is undoubtedly familiar with the properties

of such ordinary arithmetic assignment statements as

XVAR = YVAR;

The function of such a statement might be described algorithmically

as: (1) destroy the current "contents" of the variable XVAR, (2)

make an exact copy of the current "contents" of the variable YVAR

without modifying YVAR, and (3) place the copy "in" XVAR. While

the execution of such a statement is more direct than this
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algorithm would indicate, the analogy with tree assignment state-

ments should be clear if the reader will think in terms of this

algorithm while considering the statement

$XTREE = $YTREE;

This statement (1) destroys the current value or substructure

of $XTREE, (2) creates a copy of the node and value or substruc-

ture of $YTREE, and (3) places the resulting structure at $XTREE.

The net result, as with the arithmetic assignment statement, is

one of replacement or assignment of a new value.

Of course, the tree node expressions in a tree assignment

statement may be more complex than simple tree names. Several

examples are shown in Fig. 2.4-1, and should be considered in de-

tail. Figure 2.4-1 (a) shows the initial condition of two trees,

$X and $Y, which will be successively modified by the execution

of a series of tree assignment statements. The first such state-

ment, $X(3) = $Y.C, modifies the tree $X, as shown in (b). Note

that the original third subnode of $X has been deleted and re-

placed with a copy of the node $Y.C, and that the tree $Y has not

been altered at all.

Beginning with the trees in (b), the statement $X.D = $Y(LAST)

results in the modified $X shown in (c). If $X had had a node

labeled "D", it would have been replaced as in the previous ex-

ample. Because the left-hand side of the tree assignment state-

ment referred to a node not yet in existence, a new subnode of $X

was created. The new subnode is always added at the right. Thus,
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AD A C

2 4 7 1 3 6 8

(a) Original Trees

$X $Y

BC ABC

2 4 6 1 3 6 8

(b) Trees after $X(3) 
= $Y.C

$X $Y

A B CD A B C D

2 4 6 8 1 3 6 8

(c) Trees after $X.D = $Y(LAST)

$X $Y

A CD AB C

2 6 8 3 6 8

(d) Trees after $X(2) = $Y.E

Fig. 2.4-1 Results of a Sequence of Tree Assignment Statements

26



in the absence of a node $X.D, the statement $X.D = $Y(LAST)

behaves like the statement $X(NEXT) = $Y(LAST).

What if the right-hand side represents a nonexistent node?

This case is illustrated in (d). In (c), there is no node $Y.E.

Therefore, the statement $X(2) = $Y.E (1) deletes the contents

of $X(2), (2) makes a copy (null) of $Y.E, and (3) replaces $X(2)

with the copy. That is, $X(2) is replaced by a null node under

these circumstances. This convention is consistent with the ex-

ecution of the statement when the node in question exists, and

has the advantage that it allows the programmer to test expli-

citly for a null node ("IF $X(2) = $NULL THEN...") if he is in

doubt about the existence of the node referred to. on the right-

hand side of the tree assignment statement. This same behavior

occurs when.a conditional tree access is used in which the con-

dition is not satisfied. Suppose, for example, that the program-

mer had wanted to replace $X(2) in the example by a copy of the

first descendant of $Y that had a substructure. He might.have

written $X(2) = $Y.FIRST:(NUMBER(ELEMENT) > 0). Because none of

the descendants of $Y satisfies the condition, the result would

have been identical to that resulting from $X(2) = $Y.E . Both

statements yield the same result as $X(2) = $NULL

Section 2.3 gave several illustrations of automatic con-

version in which PLANS tree node references occurring in an

arithmetic context were implicitly evaluated (i.e., the vaZue of

the referenced node was used, rather than the node itself, which
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is a structure). Analogously, character strings and arithmetic

expressions may appear in tree assignment statements, as illus-

trated in Fig. 2.4-2.

Figure 2.4-2(a) shows the initial condition of the tree $X.

Figure 2.4-2(b) shows $X as modified after the execution of the

statement $X.B = 'ABC'. Described algorithmically, here is what

has happened: (1) the value or substructure of $X.B has been

deleted, because $X.B occurs on the left-hand side of a tree

assignment statement; (2) the right-hand side of the statement has

been evaluated as a tree expression, because that is what is

called for by the tree assignment statement, and (3) a copy of the

tree structure referred to on the right-hand side has replaced the

value or substructure of $X.B. By this description, then, this

tree assignment statement operated like any other. But how is

something, evaluated as a tree expression when it is in fact a

character string?

Any time a character string or arithmetic expression occurs,

when the context clearly calls for a tree expression, a dummy tree

is created. This dummy tree has only a single node, the root

node, which has a null label. The value of the node is the string

or arithmetic value specified in the PLANS expression, in this

case the string 'ABC'. The dummy tree is then used just as if the

programmer had explicitly created the tree and placed the tree's

name in the program. In the case of the example, the result is

the same as if the programmer had written $X.B = $DUMMY, where

$DUMMY is a tree with one node, no label, and the string value 'ABC'.
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$X.

2 4 6

(a) Original Tree

$X

2 ABC 6

(b) Tree after $X.B = 'ABC'

$X

2 8 6

(c) Tree of (a) after $X.B = 2*4

$X

A B C

2 13.5 6

(d) Tree of (a) after $X.B = $X.C + 7.5

Fig. 2.4-2 Type Conversion in Tree Assignment Statements
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As suggested in the explanation above, the same mechanism

applies when an arithmetic expression appears in a context that

requires a tree node reference. Thus, application of the state-

ment $X.B = 2*4 to the tree of 2.4-2(a) yields the result shown

in (c). The value of the arithmetic expression, in this case 8,

is calculated, placed on a dummy node, and becomes the value of

$X.B. It may occur to the reader that the same behavior could

as well be described as replacement of the value (or substruc-

ture) on the left by the value of the expression on the right.

As the discussion of Fig. 2.4-4 will show, this is not always

true. It will be helpful, therefore, to think in terms of the

generation of a dummy node when considering statements of this

type.

Figure 2.4-2(d) shows a statement of the same basic sort as

that of (c). In this case, the arithmetic expression on the

right-hand side involves a tree node reference. Because $X.C

occurs within an arithmetic expression, it has the value 6, just

as if $X.C were an arithmetic variable name. Therefore, the

statement $X.B = SX.C + 7.5 results in substitution of the nu-

meric value 13.5 at $X.B.

The previous discussion has shown a mechanism whereby the

value or substructure of a node can be replaced. Sometimes it

is the node label that requires modification. In this case, the

label assignment statement is used. LABEL is a special PLANS

function that takes as its argument a tree node reference.

LABEL($X(1)) is a reference not to the node $X(1) and its
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substructure, but to its label alone. The LABEL function can

appear anywhere a character string can appear in a PLANS program.

In addition, it can appear on the left-hand side of an equal sign,

as Fig. 2.4-3 shows. Such a statement is a command to replace the

current label of the specified node with the new string, which is

obtained by evaluating the expression to the right of the equal

sign.

Consider Fig. 2.4-3; (a) shows the initial state of the tree

$X. Figure 2.4-3 (b) illustrates the effect of the label assign-

ment statement LABEL($X(1)) = 'D'; , which simply replaces the cur-

rent label of the node $X(1), "A", with a new string, "D". The

label assignment statement only replaces labels, having no struc-

tural effect if the referenced node already exists. If the indi-

cated node does not exist, it is established, with a null value

and the indicated label.

The statement illustrated in (c) has exactly the same effect

as that of (b). It makes no difference whether the node .is ref-

erenced by label ($X.A) or by subscript ($X(1)). The effect of

the statement is the same. As the discussion of Fig. 2.4-4 will

show, this is not true of all tree statements.

Figure 2.4-3 (d) is another illustration of automatic conver-

sion. The right-hand side of the statement LABEL($X(1)) = $X.C

is a tree expression, but the context calls for a string or numer-

ical value. The value of $X.C is therefore obtained, and replaces

the label of $X(1). An additional concept is illustrated here:

labels can be numerical values. In fact, anything that can be a
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2 4 6

(a) Original Tree

$X

2 4 6

(b) Tree after LABEL ($X(1)) = 'D'

$X

2 4 6

(c) Tree of (a) after LABEL($X.A) = 'D'

$x

2 4 6

(d) Tree of (a) after LABEL($X(1)) = $X.C

Fig. 2. 4-3 Label Assignment Statements
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value can be a label, and vice versa. However, nodes that have

numerical values (or strings not having identifier syntax) cannot

be accessed by label in a PLANS program. Thus, $X.6 is not a

legal expression. On the other hand, $X(1) is still a legitimate

way to refer to this node. This property can be used to advant-

age in some numerical applications.

Figure 2.4-4 illustrates an important property of PLANS tree

operations, the treatment of the label on the base node of the

operation. The "base node" is the node at which a modification

occurs. In the case of a tree assignment statement, the node

named on the left-hand side is the base node. 'The question is,

When does the existing label on the base node remain, and when

is it replaced? It is unlikely that any decision rule that might

be incorporated into PLANS would successfully anticipate the de-

sires of the programmer in all cases. Therefore, a simple de-

cision rule has been incorporated that should be right most of

the time. If the base node was accessed by label, the label re-

mains; if by subscript, the label is replaced.

In Fig. 2.4-4(b), for example, the statement $X.B = $X.C has

been executed on the tree of (a). The base node, $X.B, retains

its original label, "B", because the programmer specified the

node by that label. Thus, while the value or substructure of

$X.C will appear on the node $X.B after execution of this state-

ment, the base node label will be left unchanged. In (c), on the

other hand, the base node label is replaced. In this case, the

statement $X(2) = $X.C involves a base node access by subscript.
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BC

2 4 6

(a) Original Tree

$X

2 6 6

(b) Tree after $X.B = $X.C

$X

2 6 6

(c) Tree of (a) after $X(2) = $X.C

$X

2 ABC 6

(d) Tree of (a) after $X.B = 'ABC'

$X

A )C

2 ABC 6

(e) Tree of (a) after $X(2) = 'ABC'

Fig. 2.4-4 Treatment of Base-Node Labels
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Notice that the new label, "C," is copied from the structure

referred to on the right-hand side.

Figure 2.4-4 (d) shows a situation similar to (b). Again, by

specifying the base node by label, the programmer has made an

assertion about which label is to appear on the node after ex-

ecution of the statement. The fact that the expression on the

right-hand side is a string expression has no special result

here. Figure 2.4-4(e) on the other hand, deserves special at-

tent ion. Because the node $X(2) was not specified by label, the

existing label on this node is deleted. But the DUMMY node defined

in the right-side expression has a null label. Therefore the ap-

parent result of a statement like $X(2) = 'ABC' is to delete the

existing base node label. As mentioned previously, recognition

of those cases in which a dummy structure is created will assist

the programmer in assuring that the desired operations are

achieved.

Another property of PLANS tree operations that should be well

understood is the exclusivity of values and substructures. A

node may have a null value or it may possess either a value or a

substructure, but it may never have both a value and a substruc-

ture. Figure 2.4-5 illustrates this concept. In (b), execution

of $X.A = $Y(1) places a new value on the node $X.A, with the

result that the previous substructure of $X.A is deleted. Figure

2.4-5 shows the converse case in which placement of a new sub-

structure on the node $X.B deletes the previous value of that

node.
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$X $Y

A B C D

24 12

H I 3 K

6 12 18 24

(a) Original Trees

$X $Y

A B C D

12 24 12
J K

18 24

(b) Trees after $X.A = $Y(1)

$X $Y

C DA B D

12
K K

H I J K J K

6 12 18 24 18 24

(c) Trees of (a) after $X.B = $Y(2)

Fig. 2.4-5 Value-Substructure Exclusivity
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Figure 2.4-6 illustrates some tree assignments to previously

nonexistent nodes. Figure 2.4-6(b) shows the tree of (a) as

modified by the statement $X.D = 8. It should be noted that this

statement has assigned a value and a label to the new node. Any

time the referenced node does not exist, it is caused to exist as

specified. If it was specified by label, this means the indicated

label must be placed on the new node.

Figure 2.4-6(c) shows the result of a statement in which a

nonexistent node was specified by subscript. Because no label

was used to indicate the node and the expression on the right has

no label (it is a dummy node), the resulting node has a value, but

no label. Figure 2.4-6(d) involves a new node with a label, but

no value. In the figure this result was achieved by the state-

ment LABEL($X(NEXT)) = 'D'. However, because two prime (quote)

marks together refer to the null character string, the same re-

sult would be observed after execution of the statement $X.D = "

This statement places a null string on the node as a value, but

that is completely equivalent to no value at all.

Figure 2.4-6(e) shows what happens when an assignment is

made to a node specified by a subscript that is too large. (It

is, of course, only too large if the programmer did not want the

result shown in the figure.) The programmer has stated that the

fifth subnode of $X is to acquire the value 8. But this can only

occur if, after execution of the statement, $X has at least five

descendants. Because there were only three descendants before

the statement was executed, two new nodes will be created. Only
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$TREE

2 4 6

(a) Original Tree

$TREE

A B C' D

2 4 6 8

(b) Tree after $X.D = 8

$TREE

A B C
2 4 6 8

(c) Tree of (a) after $X(NEXT) 
= 8

$TREE

A B C D

2 4 6

(d) Tree of (a) after LABEL ($X(NEXT)) = 'D

$TREE

2 4 6 8

(e) Tree of (a) after $X(5) = 8

Fig. 2.4-6 Assignments to Nonexistent Nodes
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the latest of these newly created nodes is involved in a tree

assignment statement; therefore, only the last node can acquire

a label or a value. The remaining new node(s), in this case $X(4),

will be null.

In addition to the tree assignment statement, which usually

replaces the current contents of a specified node with a copy of

the contents of another node, there are three other basic tree

manipulation statements that perform somewhat similar functions.

These are the GRAFT, INSERT, and GRAFT INSERT statements. Instead

of simple replacement, the INSERT and GRAFT INSERT statements

result in an insertion, with no deletion of information from the

target tree. Instead of copying the information to be added to

the target tree, the GRAFT and GRAFT INSERT statements remove

the specified structure from its original location and move it to

the target tree. Examples of these statements are shown in Fig.

2.4-7 (GRAFT), 2.4-8 (INSERT), and 2.4-9 (GRAFT INSERT). In each

case, the results of the statements should be compared with one

another (they are parallel cases) and with the corresponding

tree assignment statements in Fig. 2.4-1.

Figures 2.4-1(b), 2.4-7(b), 2.4-8(b), and 2.4-9(b) show the

effects of the statements $X(3) = $Y.C; GRAFT $Y.C AT $X(3);

INSERT $Y.C AT $X(3); and GRAFT INSERT $Y.C AT $X(3); respectively.

These statements all perform parallel operations, differing only

by virtue of the special properties of the four statement types.

It should be noted in particular that: (1) the tree assignment

and GRAFT statements have the same effect (replacement) on SX,
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$X $Y

A B D B CD

2 4 7 1 3 6 8

(a) Original Trees

$X $Y

A B AB D

2 4 6 1 3 8

(b) Trees after GRAFT $Y.C AT $X(3)

$X $Y

2 4 6 8 1 3

(c) Trees of (b) after GRAFT $Y(LAST) AT $X.D

$X $Y

2 6 8 1 3

(d) Trees of (c) after GRAFT $Y.E AT $X(2)

Fig. 2.4-7 GRAFT Statements
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$X $Y

A B- D A B C D

2 4 7 1 3 6 8

(a) Original Trees

$X $Y

A B C D A B C D

2 4 6 7 1 3 6 8

(b) Trees after INSERT $Y.C AT $X(3)

$X $Y

A B C D D O A B C D

2 4 6 8 7 1 3 6 8

(c) Trees of (b) after INSERT $Y(LAST) AT $X.D

$X $Y

A B C D D A B C D

2 4 6 8 7 1 3 6

(d) Trees of (c) after INSERT $Y.E AT $X(2)

Fig. 2.4-8 INSERT Statements
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$X $Y

A B D A B C D

2 4 7 1 3 6 8

(a) Original Trees

$X $Y

A B C D A B D

2 4 6 7 1 3 8
(b) Trees after GRAFT INSERT $Y.C AT $X(3)

$x $Y

A B C D D A B

2 4 6 8 7 1 3
(c) Trees of (b) after GRAFT INSERT $Y(LAST) AT $X.D

$x $Y

A B C D D AB

2 4 6 8 7 1 3
(d) Trees of (c) after GRAFT INSERT $Y.E AT $X(2)

Fig. 2.4-9 GRAFT INSERT Statements
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the target tree; (2) INSERT and GRAFT INSERT have the same effect

(insertion) on $X; (3) the tree assignment and INSERT statements

have no effect on $Y; and (4) GRAFT and GRAFT INSERT have the

samne effect (deletion) on $Y. It should also be noted that in-

sertions are made at (or, if you prefer, before) the named node.

The named node, and all others to the right, are "moved" one node

to the right.

Parts (c) of the four figures show additional parallel opera-

tions of these four types. It should be observed that the INSERT

and GRAFT INSERT operations of (c) result in two subnodes of $X

that possess the same label. This is quite allowable, but the

programmer should be aware that, if this occurs, the subsequent

reference $X.D is a reference to only the first such node. Either

node can still be referenced by subscript, however, and a refer-

ence of the form $X.ALL:(LABEL(ELEMENT = 'D')) would access all

such nodes in one operation.

Parts.(d) of the four figures are included to make it-clear

that in all cases an update to the target tree is performed. If

the operation calls for a nonexistent node to be inserted or

placed into a tree, a null node will result. The programmer can

then test for the presence of a null node and, if desired, remove

it.

A final note on these four statements is particularily impor-

tant. The GRAFT, INSERT, and GRAFT INSERT statements give the

appearance of being more complex than the tree assignment state-

ment, and the programmer may naturally assume that the latter is
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more efficient and should be given preference whenever there is a

choice. A little reflection on the underlying structural opera-

tions will show that this is not true. The tree assignment and

INSERT statements require the generation of a complete copy of an

existing structure. The execution cost of these statements (and

the storage space required) is largely a function of the size of

the structure that must be copied. The GRAFT and GRAFT INSERT

statements, on the other hand, require only the alteration of a

few pointers so that an existing structure can be moved, com-

pletely intact, to another tree location. The execution cost of

these statements is minimal, no additional storage is involved,

and the cost is entirely independent of the size of the struc-

ture that is moved. It cannot be overemphasized that GRAFT and

GRAFT INSERT operations are not only very powerful, but are also

very efficient!

It is frequently necessary to remove a structure from a tree

without placing it anywhere else. This simple deletion operation

is accomplished by means of the PRUNE statement, illustrated in

Fig. 2.4-10. The programmer simply specifies the node (or nodes)

that, together with.the associated substructure, is to be removed.

This operation allows the removal of undesired information from

a tree. It may also be used, particularly as in (d), to release

computer storage that is no longer needed. It should be kept in

mind while programming in PLANS that the programmer is really

doing his own dynamic storage allocation (although PLANS handles

all the details for him). When information is no longer needed,
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(a) Original Tree

$X

(b) Tree after PRUNE $X.C

$X

A B D
2 4 8

(c) Tree of (a) after PRUNE $X.C, $X.D

$X

dA B
2 4

(d) Tree of (a) after PRUNE $X

$X

Fig. 2.4-10 PRUNE Statements
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its storage can be reused, but only if the programmer releases

it by means of a PRUNE statement.

2.5 SPECIAL STATEMENTS

The previous sections have discussed the basic dynamic tree

manipulation capabilities of PLANS. These capabilities have been

provided because they fulfill the essential requirements of sched-

ule development and optimization programming. It should be ap-

parent, though, that the capabilities of PLANS have been kept

quite general in nature. This provides the flexibility that is

needed to span a problem space as broad as that of scheduling.

There remain, however, a small number of operations that are com-

plex, and well-defined, that occur frequently in scheduling

operations, and are difficult to handle with basic PLANS. These

include ordering (sorting) and the generation of the combinations

or permutations of a set of elements. Special statements have

been provided in PLANS for the performance of these slightly more

specialized functions.

The ORDER statement is used to place the subnodes of a partic-

ular node in ascending or descending order by a particular prop-

erty they possess. If, for example, it is desired to order a

group of payloads by weight, heaviest first, one might write

ORDER $PAYLOADS BY WEIGHT; or if they were to be ordered by

length, shortest first, with ties broken by width, narrowest

first, a statement of the form ORDER $PAYLOADS BY -LENGTH,

-WIDTH; would be appropriate.
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Figure 2.5-1 illustrates a few of the properties of the ORDER

statement. It should be apparent that an ORDER statement refers

to a node, which, in turn, has subnodes to be ordered. Each sub-

node has, at least potentially, the property or properties on which

ordering is to occur. Ordering can be in either ascending or de-

scending order. Figure 2.5-1(b) illustrates an ORDER statement

in which the subnodes of the node $X are sorted into descending

order on the basis of property Y. Note that, where the property

in question is not possessed by a particular subnode (e.g., $X.C

has no subnode labeled Y), a value of zero is assumed and the sort

is performed accordingly. Note also that the normal ordering is

descending; that is, the largest value occurs first. Thus, after

execution of ORDER $PAYLOADS BY WEIGHT, the heaviest payload will

be $PAYLOAD(1). If ascending order is desired, the property name

should be preceded by a minus sign (-), as in (c).

PLANS provides a special DO statement for the generation of

all the combinations or permutations of a set, taken a specified

number at a time. Thus, for example, one can write DO FOR ALL

COMBINATIONS OF $X TAKEN 2 AT A TIME, with the result that the

DO-END group that begins with this statement will be executed

once for each 2-element combination of the subnodes of $X. The

particular combination that is relevant during an iteration of

this DO-END group may be referred to within the DO-END group by

the reserved tree name $COMBINATION (or $PERMUTATION in the case

of a DO FOR ALL PERMUTATIONS... statement). Figure 2.5-2 shows

an example. $X has three elements with labels A, B, and C.
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x Y Y X X )Y
12 -3 21 19 -4 8

(a) Original Tree

$X

B D C A

21 19 -8 -4 12 -3

(b) Tree after ORDER $X BY Y

DA B

x )Y x Y Y x

-4 8 12 -3 21 19

(c) Tree after ORDER $X BY -X

Fig. 2.5-1 ORDER Statements
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2 4 6
(a) Original Tree

$COMBINATION

A B

2 4

(b) First Iteration of DO FOR ALL COMBINATIONS
OF $X TAKEN 2 AT A TIME

$COMBINATION

A C

2 6
(c) Second Iteration

/$COMBINATION

B C

4 6
(d) Third Iteration

Fig. 2.5-2 Automatic Generation of Combinations
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The combinations of these elements taken 2 at a time are {A, B},

{A, C1, and {B, C}. It will be observed that the tree $COMBINATION

contains the node (and, in fact, the entire substructure) of $X.A

and $X.B during the first iteration of the DO-END group, $X.A and

$X.C during iteration two, and $X.B and $X.C during iteration

three. The DO-END group is automatically exited before iteration

four, just like the usual DO I = 1 TO 3 statement. The combina-

tions (or permutations) are generated in standard (lexicographic)

order. They, therefore, provide a mechanism for automatic gener-

ation of combinations in standard sequence, and if a complete

list of combinations of all sizes is needed, nested DO-END groups

of the form

DO I = 1 TO NUMBER($X);
DO FOR ALL COMBINATIONS OF $X TAKEN I AT A TIME;

END;
END;

can be used.

In order to provide efficient execution of these commands,

the tree $COMBINATION (or $PERMUTATION) is not actually generated.

The existing tree (in the example, $X) from which the combinations

are generated is actually used. $COMBINATION is merely a conven-

ient way of referencing only those subnodes that are involved in

the current combination. Thus, although $X(1) is the element A,

$X(2)is B, and $X(3) is C, during the second iteration

$COMBINATION(1) is the element A, $COMBINATION(2) is the element

C, and there is no $COMBINATION (3). The important point to
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understand is that modifications made to $COMBINATION are actually

being made to $X. Furthermore, no structural modifications are

allowed at the base node level. In the example, one could change

the value of $COMBINATION(2) or add a substructure to it, but no

immediate descendants of either $X or $COMBINATION may be added,

deleted, or reordered inside the DO-END group.

2.6 A SIMPLE EXAMPLE

To assist the reader in gaining greater intuitive feeling for

PLANS dynamic tree operations, a simple (but useful) PLANS program

will now be considered in some detail. The program is called

ORDER BY PREDECESSORS, and its function is to place a list of jobs,

any one of which may have any of the others as a required prede-

cessor, into an order such that the predecessors, if any, of each

job occur earlier in the list than does the job itself. This

function, fairly difficult in most programming languages, is very

simple and straightforward in PLANS. While there are many func-

tionally equivalent ways to write this program, one of the sim-

plest and most efficient is as follows.

1 ORDER.,BY.PREDECESSORSI PROCEDURE (SJOBLIST, SORDERED.LI§T) i
2 DECLARE STEMP, SNAME.LIST LOCAL I
3 LOOPs
4 GRAFT SJOBLIST.FIRST (ELEMENT.PREDECESSOR SUBSET OF SNAME.J.IST)

AT STEMP ;
5 IF STEMP IDENTICAL TO SNULL THEN RETURN I
6 SNAME-LIST(NEXT) = LAREL(STEMP) I

7 GRAFT STEMP AT SORDEREDLIST(NEXT) I
8 60 TO LOOP I
9 END ORDERBY.PREDECESSORS I
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Let us consider the execution of this program for a simple data

case.

Notice, first (line 1), that the program is a called procedure

with the explicit parameters $JOBLIST and $ORDERED_LIST. The call-

ing program will initialize these trees as desired. Rather than

attempting to reorder $JOBLIST, ORDER BY PREDECESSORS will move

the jobs, one at a time, from $JOBLIST to $ORDERED LIST; so that

the $ORDERED LIST will become a correct ordering of the jobs

that were originally in $JOBLIST. $JOBLIST, on the other hand,

will be returned null, assuming all goes well. Upon return from

ORDER BY PREDECESSORS, then, the calling program will use

$ORDERED_LIST where $JOBLIST was used before (or will GRAFT

$ORDERED_LIST AT $JOBLIST) after checking $JOBLIST for a null

condition.

In line 2, $TEMP and $NAMELIST are declared to be local

trees. This means two things: (1) any use of these tree names

within this procedure is entirely local, and will not affect trees

of the same name outside this procedure, and (2) each time

ORDER BY PREDECESSORS is called, $TEMP and $NAMELIST will be

initially null, and any storage they use will be made available

for reuse upon return without any other action on the programmer's

part.

Let us assume the initial data shown in part (a) of Fig. 2.6-1.

$JOBLIST describes a predecessor network in which job B has no

predecessor jobs, jobs C and D must each be preceded by job B, and

job A must follow both C and D. The diagram shows only information

52



$JOBLIST $ORDEREDLIST $TEMP $NAMELIST

A B C)D
PREDECESSOR

PREDECESSOR PREDECESSOR

C D B B
(a) Initial State

$JOBLIST $ORDEREDLIST $TEMP $NAMELIST

A C )D

PREDECESSOR PREDECESSOR PREDECESSOR

C D B B

(b) After GRAFT $JOBLIST.FIRST:(ELEMENT.PREDECESSOR SUBSET OF $NAMELIST)
AT $TEMP

$JOBLIST $ORDERED LIST $TEMP $NAME_LIST

O OAB

A C )D

B
PREDECESSOR PREDECESSOR PREDECESSOR

C D B B

(c) After $NAMELIST(NEXT) = LABEL($TEMP)

$JOBLIST $ORDEREDLIST $TEMP $NAMELIST

0

A )C ) D Bo

PREDECESSOR PREDECESSOR PREDECESSOR

C D B B

(d) After GRAFT $TEMP AT $ORDEREDLIST(NEXT)

Fig. 2.6-1 ORDER BY PREDECESSORS: ITERATION 1
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essential for present purposes. However, it is assumed that

other information about each job (e.g., duration, resource require-

ments, etc) is also present. Because we can access predecessor

information by label without regard for its ordinal position, any

other information about these jobs is irrelevant, so long as the

label PREDECESSOR is used only with the meaning assumed here.

$ORDERED_LIST is assumed to be null. Ordinarily this condition

will be assured by the calling program. $TEMP and $NAME LIST

are automatically initialized to a null condition.

Consider now the effect of the GRAFT statement of line 4 on

these trees. This statement specifies that a particular job is

to be removed from $JOBLIST and placed at $TEMP. The job to be

selected is to be the first job whose predecessor set is a subset

of $NAME_LIST. $NAME_LIST will be used to collect the names of

the jobs in $ORDERED_LIST, so that the SUBSET OF relation can be

used to automatically determine whether the predecessor require-

ment of a particular job is satisfied. Because $NAME LIST is

presently null, the only job of $JOBLIST that can possibly satisfy

the conditional access is a job that has no predecessors. Note

that job B fulfills this requirement, and that it is not nec-

essary in this case that a node labeled PREDECESSOR even appear

under job B because a nonexistent node has all the properties of

a null node, including null subnode structure. Job B therefore

satisfies the conditional access, and is removed from $JOBLIST

and placed at $TEMP, as shown in Fig. 2.6-1(b). While the diagram

includes no subnodes of the job B base node, that node and aZZ its
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substructure have replaced the previously null root node of the

tree $TEMP.

The statement of line 5 now tests for failure of the previous

GRAFT statement. In the event that no subnode of $JOBLIST sat-

isfied the access condition, $TEMP will now be null, and detection

of this condition can be used to trigger return from ORDER BY

PREDECESSORS. In the present case, however, $TEMP is not null.

A node is defined as null only if it either does not exist or has

both a null value and a null label. Regardless of any substruc-

ture, the node $TEMP now has the label "B" and is therefore not

null, and no return occurs.

The statement of line 6 is therfore executed, placing the

name of the job that was found into $NAME_LIST. Several things

should be noticed here. Since $NAME_LIST is currently null,

$NAME_LIST(NEXT) is equivalent to $NAME_LIST(1). LABEL($TEMP)

is a character string. Therefore, a dummy node is established,

with a null label, and placed at $NAME_LIST(NEXT). The statement

causes .the job name, "B" to be a value of $NAME_LIST(1), so that

subsequent comparisons of $NAME LIST and PREDECESSOR nodes will

find job names as values in both places.

Finally, line 7 is executed, moving the found job, with all

descriptive information, from $TEMP to the next available position

in $ORDERED_LIST. Note that $TEMP again reverts to a null condi-

tion. Trees always have root nodes, although they may be null.

Thus, the removal of the node labeled "B" causes another (null)

node to be placed at $TEMP.
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The program has now found the first job that can be executed

and has moved it into $ORDEREDLIST. Another iteration is there-

fore initiated (line 8) by jumping back to LOOP.

Figure 2.6-2 shows the tree manipulations that occur during

iteration 2. The initial state, part (a), is the same as that at

the end of iteration 1. The conditional GRAFT statement of line

4 again searches for a job whose predecessors, if any, are all

named in $NAME LIST. Since $NAMELIST now contains the job name

"B," either a job with no predecessors or a job with only the

predecessor "B" will satisfy the access condition. The first

such job now in $JOBLIST is job C, which is therefore grafted at

$TEMP [Fig. 2.6-2(b)]. Because $TEMP is not null, no return is

made at line 5.

The statement at line 6 places the name of the found job at

the next available subnode of $NAME_LIST. As shown in Fig.

2.6-2(c), $NAMELIST now contains the names of the two jobs (B

and C) found so far. $TEMP is grafted (line 7) onto the next

available position of $ORDEREDLIST [part (d)], which now con-

tains all the information about jobs B and C (in that order) that

was originally in $JOBLIST. Only the jobs not yet placed in

$ORDERED LIST still remain in $JOBLIST. Line 8 then causes another

iteration to begin.

This process is repeated two more times, once for job D and

once for job A, with the result shown in Fig. 2.6-3(a). All jobs

have now been moved to $ORDERED_LIST. When the conditional GRAFT

statement of line 4 is executed, no job will be found, and a null
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$JOBLIST $ORDERED_LIST $TEMP $NAME LIST

A C D

PREDECESSOR PREDECESSOR PREDECESSOR

C D B B

(a) After Iteration 1

$JOBLIST $ORDERED_LIST $TEMP $NAMELISTC
A D B PREDECESSOR

PREDECESSOR PREDECESSOR

B

C D B

(b) After GRAFT $JOBLIST.FIRST:(ELEMENT.PREDECESSOR SUBSET OF $NAME LIST) AT $TEMP

$JOBLIST $ORDERED_LIST $TEMP $NAME LIST

PREDECESSOR
A D A

B CPREDECESSOR PREDECESSOR

B

C D B

(d) After GRAFT $TEMP AT $ORDEREDLIST(NEXT)

$JOBLIST $ORDEREDLIST $TEMP $NAMELIST

O
A D B C

P B CPREDECESSOR PREDECESSOR PREDECESSOR

C D B B
Fig. 2.6-2 ORDER BYPREDECESSORS: ITERATION 2
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". $JOBLIST $ORDERED LIST $TEMP $NAME_LIST
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PREDECESSOR PF cECESSOR PREDECESSOR
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(a) After Iteration 4

$JOBLIST $ORDERED LIST $TEMP $NAME_LIST
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B C D A
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(b) After GRAFT $JOBLIST.FIRST:(ELEMENT.PREDECESSOR SUBSET OF $NAME_LIST) AT $TEMP

Fig. 2.6-3 ORDER BY PREDECESSORS: ITERATION 5



node will be placed on $TEMP (b). This condition allows the re-

turn to.occur in line 5. $JOBLIST and $ORDERED_LIST will be re-

turned to the calling program, while $TEMP and $NAMELIST will be

pruned automatically in order to free their storage.

It may occur to the reader to question the use of $TEMP be-

cause a found job could be grafted (line 4) directly at

$ORDERED_LIST(NEXT). However, this would require two additional

accesses to $ORDEREDLIST(LAST), one to test for a null condition

(line 5) and one to extract the label (line 6). In addition, be-

fore exit, the extra null node that would have been grafted onto

$ORDERED_LIST would have to be removed. It should always be borne

in mind that node access time is a function of the number of sub-

nodes that must be scanned (left to right) before the desired

node is found. Thus, $TEMP is more efficient to access than is

$ORDEREDLIST(LAST), and the difference is more pronounced as the

$ORDEREDLIST grows. Because GRAFT statements are very efficient,

the use of $TEMP is preferable here.
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3.0 SYSTEM OPERATIONS AND PROBLEM MODELING
-------------------------------------------------------

The successful computer-aided solution of scheduling and re-

source allocation problems requires an integrated approach using

three conceptual and analytical tools: (1) a computer programming

language, (2) a descriptive model or representation of the system

and its operations, and (3) problem solving approaches or decision

making rules (algorithms). The scheduling language (PLANS) speci-

fied during this study supplies the first of thesetools. The

special features of PLANS that facilitate this effort have been

described extensively in Chapter 2.0 of this volume as well as in

Volumes I and III. A library of routines (modules) that perform

operations model and algorithm functions is also specified in

Volume III. This section discusses the use of the PLANS modules

for problem description and solution.

3.1 A GENERIC SCHEDULING OPERATIONS MODEL

The scheduling modules like the language itself are applicable

to complex systems in general and are not specific to the Space

Shuttle. The reasons for, and expected benefits of, a generic ap-

proach are discussed in Volume I and are not repeated here. It is

appropriate however to raise the question, "What are the conse-

quences of using a generic modeling approach for the potential

user of the PLANS programming system?"

3.1.1 Generic Modeling Consequences for the User

One price the PLANS user must pay to benefit from the general

problem modeling approach developed by this study, is to learn a

generic system description nomenclature. He must also learn to
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recognize the functional elements, physical resources, and oper-

ational processes (activities) of his system and their interrela-

tionships within the operations model framework. If he does this,

he will gain, from the following pages, an understanding of how

various techniques can be applied effectively using PLANS.

Before a generic approach to operational system and problem

modeling is described, two important points should be stated.

1) There is no substitute for knowledge of the system that is to

be modeled (and scheduled);

2) The automation of systems scheduling and resource allocation

should not be accepted on an a priori basis without qualifica-

tions.

The significant increase in capabilities due to the power of the

PLANS language and module library should not promote the miscon-

ception that the user will not need to think about his problem

applications in depth.

Because a generic modeling approach was used to develop speci-

fications, the PLANS module user will not find an input data struc-

ture including explicit labels such as, PAYLOAD NAME, PAYLOAD

LENGTH, ORBITER SERIAL NUMBER, or ORBITER PAYLOAD BAY LENGTH.

With the generic model, it is up to the user to know that these

input items, when expressed generically, have the form RESOURCE:

TYPE; NAME; PARAMETER; CLASS; etc. Similarly he does not find

BRIEF CREW or CHECKOUT PAYLOAD, but finds instead PROCESS: NAME,;
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DURATION; TYPE; RESOURCES GENERATED; RESOURCES DELETED; and RE-

QUIRED SOURCES; etc. All of these generic elements are de-

scribed and properly related to each other in Section 3.4.

Note that nothing prevents the use of PLANS to program models

and algorithms with explicit RESOURCE or PROCESS labels, if the

user is willing to trade the flexibility and other benefits of

the generic approach for the presumed advantages of explicit

labels in the basic program structure and logic. However, it

should be understood that although generic labels are used in a

basic program code, the data for that code will contain the

problem-specific data. in explicit terms and thus will provide

descriptive detail in a user-oritnted format. This compensates

for the use of generic labels in the program logic while pre-

serving the flexibility of that logic.

Even more significant than the perception of system elements

in terms of genetic elements, is the choice of correct resources

and processes for the model and the determination of the appro-

priate level for resource and process description. Selection of

these items requires a knowledge of the sytem as well as a knowl-

edge of the approach that will be used to obtain a solution.

3.1.2 Elements of the Generic Scheduling Operations Model

Drawing upon the Shuttle system as an example, it can be

recognized that the description of Shuttle operations is char-

acterized mainly by interrelated sets of activities or processes

that integrate various physical system resources to achieve a
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final launch configuration. This configuration must, of course, be

capable of achieving specific objectives. Because scheduling is

of primary concern, the parameters used to describe system opera-

tions consist of a set of processes that require specific resources

for particular time intervals. The association of specific re-

sources with a time interval constitutes a schedule unit, i.e., a

basic element of a schedule. The concept of using processes to

associate resources into schedule units is illustrated in Fig.

3.1-1.

The recognized technique to describe relationships between

activities or events is the network or flow diagram. Figure

3.1-2 is a sample diagram that illustrates the flow of Shuttle

mission operations on a top-level basis. Such diagrams visually

depict one or more operations sequences in terms of predecessor-

successor relationships and also contribute to the recognition

of more general temporal relations.

A fundamental concept of the generic operations model is

that for scheduling and resource allocation purposes an opera-

tional system can be described in terms of RESOURCES, PROCESSES

and OPERATIONS SEQUENCES. This concept leads directly to the

specification of standard PLANS data structures that contain

descriptive information arranged with the same logical separa-

tion. The operations model data structures are described in

detail in Section 3.5.
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The use of ghe generic oprations model concept requires not

only an understanding of the conventions for describing the sys-

tem to be scheduled, but also the conventions used to establish

any procedural logic associated with the model. In particular,

a conceptual framework is needed for understandinghow descrip-

tive information is communicated to decision logic algorithms

to solve a scheduling problem. The roles of the model and the

algorithm may be interpreted in terms of a dialog; the algorithms

request information about a system and its operation on which to

base a scheduling decision and the operations model supplies the

data. Any functions that must be performed to supply the algo-

rithms with appropriate model information can be regarded as

operations model functions. A typical integration of operations

model functions and algorithm functions is shown in Fig. 3.1-3.

Annotations on the figure relate to the OSARS (NASA-MPAD) pro-

gram currently used to assign resources to flights.

The logical separation between operations model functions and

algorithm functions serves to define logic boundaries for the

PLANS module library. The user who perceives this distinction

and who uses the descriptive conventions of the generic opera-

tions model will find that the PLANS module library will provide

many powerful capabilities that are easily incorporated into his

PLANS program.
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Selected Time YES Can previously sched-

If a payload is uled payload be pre-
assigned via Can Jobs empted by this one?
this route, the Are Sufficient NO Be Unscheduled to NO
next load will Resources Available?
be considered

before time is

incremented; YES
thus, the next FISelect Resources for Job Using

pass for this Subproblem-Level Algorithm

test will yield Update Assignments for All
NO and substi- Selected Resources If choice exists,
tution will be _ take resources
considered. that have been

Are ~ Are available longest.

All Jobs All JobsNO. NO
in Joblist YES for Entire Problem

Considered?/ IScheduled?

YES

Fig. 3.1-3 Operations Model/Solution AZlgorithm Interface Example with OSARS Annotation
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3.2 PROBLEM TYPES ACCOMMODATED BY THE OPERATIONS MODEL

To assist the reader whose interest is in a special problem

or class of problems, this section states some typical problems

without detail, characterizes those problems in terms of the

operations model described in Section 3.4, and suggests the sub-

sections where modeling details can be found. This information

is provided in Table 3.2-1. Each problem type in Table 3.2-1

could require any or all of the descriptive generality contained

in Section 3.4. The reader should not assume that the subsec-

tions referenced contain the only relevant material.
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Table 3.2-1
Use of PLANS Generic Operations Model for Describing Typical Problem Classes

Typical Plans Sections of Volume II

Operations Model Giving More Detail

Problem Class Characterization Paragraph Page

Project Planning Predecessor networks, 3.4.1 thru 3.4.6
& Control splittable jobs, 3.6

pooled resources

Crew Activity General temporal 3.4.7
Timelining relations with 3.4.10

item-specific 3.4.11
resources

Cargo Item-specific 3.4.7
Containerization resources, quasi- 3.6

enumerative
solution techniques

Facility Utilization Predecessor network 3.4.1
with item-specific 3.4.2
resources 3.4.7

Transportation System General temporal 3.4.3
Scheduling relations with 3.4.10

pooled resources

Plant Production Predecessor networks 3.4.1 thru 3.4.6
Scheduling with pooled resources 3.6

Computer Job Splittable jobs 3.4.1 thru 3.4.5
Scheduling pooled resources

Payload Compatibility Item-specific resources, 3.4.7
Grouping quasi-enumerative 3.6

solution techniques

Personnel Resource Pooled resources, 3.4.3
Allocation explicit descriptors 3.4.12

for pooled resources

Experiment Selection Item-specific 3.4.3
& Equipment Allocation &-pooled resources 3.4.7
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3.3 PLANS LIBRARY MODULES

Functional specifications for a library of routines, called

modules, have been developed in parallel with the specifications

for the programming language (PLANS). The contents of such a

library of modules have been integrated using the generic opera-

tions model concepts described in Section 3.1. Decisions on what

level of detail to include are necessarily somewhat arbitrary and

based on nonquantifiable judgments. However, the current modules

have resulted from a functional analysis of many classes of schedul-

ing problems using the following criteria:

1) Each module in the current specification should be limited to

a single logical function. Although it is possible to group

several of the specified modules together, based on high-

level functional similarity, to do so either restricts flexi-

bility or increases the computational inefficiency of the

functions represented. Therefore, the modules specified for

the program library perform a single separable logical func-

tion.

2) Each module specified performs a function that is common or

likely to occur in developing typical scheduling software.

Although this criteria seems self-evident, it is easy to con-

ceptualize numerous modules that are applicable to only an

infrequent special case or that are required only in unen-

lightened or highly encumbered approaches to a scheduling

problem. In those cases where a function would be required
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by one approach to a problem but not required by an alterna-

tive and clearly superior approach, a module to perform that

function has not been specified.

3) Each module specified does not contain judgments or decision-

making logic for which the criteria are open to opinion. For

example, no modules assume specific economic models, queuing

service policies, or criteria for resolving resource alterna-

tives. There are no approximations of dependent variables by

polynomials or piecewise-linear functions buried in any module

logic. These judgmental matters have been considered too

problem-dependent and inflexible for an initial library speci-

fication. Because of the criterion for functional simplicity

and separability [criterion 1) above], the specified opera-

tions model modules perform elementary operations and gener-

ally return information on which decisions can be made rather

than the decisions themselves. The modules that are specified

as algorithms make simple decisions based on quantitative cri-

teria that are easily perceived by the user. A clear dis-

tinction has been attempted between simple decision-making

modules (i.e., algorithms) and information providing modules

(the operations model) so that all of the latter are equally

applicable whether exercised interactively by a user making

real-time decisions or in a batched system design where

algorithm modules make the scheduling decisions.
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The criteria stated are appropriate for specifying the first

modules to be placed in a program library because flexibility and

commonality of application are prime considerations. It is not

intended to imply, however, that future additions to the module

library should be restricted by these criteria. Analyses are

currently underway that will lead to the specification of higher-

level modules. Such modules will combine the functions of many

of the currently specified modules through special purpose exe-

cutive logic. Special attention is being paid to methods for

translating generalized problem formats into the more restrictive

structures required by existing solution methodologies.

Table 3.3-1 contains a brief description of the modules speci-

fied in this study. Detailed functional descriptions for all

modules are provided in the sections of Volume III indicated in

the table. The reader who is interested in the use of a partic-

ular module should refer to the sections indicated in the table.
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Table 3.3-1 Summary of PLANS Module Library Contents

Volume II
References

Volume III
Module Name Brief Description of Intended Usage Paragraph Page Specifications

DURATION Calculates the duration of any 2.4.1
standard (simple or multiple)
interval

ENVELOPE Calculates an interval that is the 2.4.2
smallest cover of a given standard
(simple or multiple) interval

INTERVAL UNION Calculates a standard interval that 2.4.3
is the union of two standard intervals,
i.e., all points in the output standard
interval are in one or both of the
input standard intervals.

INTERVALINTERSECTION Calculates a standard interval that
is the intersection of two standard
intervals, i.e., all points in the
output standard interval are in both
the input standard intervals.

FIND_MAXIMUM Finds the maximum value in a numeric 2.4.5
set and all the elements that have
that maximum value.

FIND MINIMUM Finds the minimum value in a numeric 2.4.6
set and all the elements that have
that minimum value.

CHECK_FOR_PROCESS_ Checks for input data consistency, 2.4.7
DEFINITION i.e., checks that all operations

sequences named in $OBJECTIVES are
defined in $OPSEQUENCE and that all
processes in those operations se-
quences or in $OBJECTIVES are defined
in $PROCESS.

GENERATE_JOBSET Creates individual jobs for each 4.3 2.4.8
occurrence of a process specified
explicitly or via an operations
sequence in $OBJECTIVES. Merges
information contained in $OBJECTIVE,
$OPSEQUENCE, and $PROCESS into a
tree called $JOBSET. Jobs in
$JOBSET are ready for the decision
algorithms to make explicit assign-
ments.

CHECKEXTERNAL_ Identifies temporal constraint 3.4.10 2.4.9
TEMP RELATIONS violations that would occur if two

sets of job assignments were merged.
Useful for checking if a potential
assignment will be consistent with
existing assignments.

CHECK _INTERNAL_TEMP_ Identifies temporal constraint 3.4.10 2.4.10

RELATIONS violations that exist within a set
of job assignments. Useful in find-
ing constraint violations after
multiple assignments have been made
with temporal constraints relaxed.

CHECK_ELEMENTARY_ Checks satisfaction of a single 3.4.10 2.4.11

TEMP RELATION binary temporal relation given
specific assignments for the two
jobs named in the temporal relation.
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Table 3.3-1 (cont)

Volume II
References Volume III

Module Name Brief Description of Intended Usage Paragraph Page Specifications

NEXT SET Determines a set of specific resource 4.4 2.4.12
items to meet the requirements of a
job and permit the earliest possible
execution of that job.
Determines future.times the job
requirements can be met with any
combination of appropriate resource
types.

RESOURCEPROFILE Determines the profile of a resource 4.3 2.4.13
pool over a given time interval for
both 'normal' and 'contingency' levels.
Determines the profile of the assigned
portion of a pool and gives the jobs
to which the resources are assigned.

POOLED_DESCRIPTOR_ Determines if a single assignment 3.4.12 2.4.14

COMPATIBILITY of a job using pooled resources
with explicit descriptors is (will
be) compatible with existing de-
scriptors for resources required
by that job.

DESCRIPTOR_PROFILE Determines the descriptors for an 2.4.15
item-specific resource that are
valid after a set of jobs involving
those resources have been scheduled.
Uses the assignment information in
$RESOURCE to determine the descriptor
set at a particular time.

UPDATERESOURCE Records the scheduling of a schedule 4.4 2.4.16
unit (job) by writing assignments in
$RESOURCE for all resources used
in the schedule unit.

WRITEASSIGNMENT Writes a single assignment for a re- 4.3 2.4.17
source and adds the assignment node
in chronological order in $RESOURCE.

UNSCHEDULE Deletes assignments from $RESOURCE
for all resources associated with a
specified job to be deleted.

COMPATIBILITY SET Enumerates all compatible subsets of 3.6 2.4.19

GENERATOR an input set using externally
supplied compatibility criteria.

FEASIBLE PARTITION Generates all sets of integers with 3.6 2.4.20

GENERATOR a given number of elements that
sum to a given total. Useful in
fathoming many branches in enumer-
ative heuristics.

PROJECT DECOMPOSER Identifies at subprojects within 3.4.1 2.4.21
a project description; i.e., finds 3.6
subnetworks that contain all pre-
decessors and successors of its
member activities.

REDUNDANT Identifies and eliminates redundant 3.4.1 2.4.22

specifications of predecessors in 3.6
PREDECESSOR $JOBSET; e.g., in A < B B < C
CHECKER A < C, the last specification is

redundant.
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Table 3.3-1 (cont)

Volume II
References

Volume III
Module Name Brief Description of Intended Usage Paragraph Page Specifications
CRITICAL_PATH_ Calculates early and late start and 3.4.2, 3.4.4 2.4.23

CALCULATOR finish times as well as total and 3.6
free float in a network of jobs. 4.3

PREDECESSORSET_ Creates, from a set of jobs with 3.4.4 2.4.24

INVERTER predecessors, an equivalent set of 3.6
jobs with successors. Used in
critical path analyses.

NETWORKCONDENSER Eliminates activities (jobs) from 3.4.2 2.4.25
a network leaving only events linked
by critical delays as branches.

CONDENSED NETWORK_ Merges two condensed networks into a 3.4.2 2.4.26

MERGER single composite condensed network,
and computes the critical path data
for the composite network.

NETWORK ASSEMBLER Assembles a master network from sub- 3.4.2 2.4.27
networks with interfacing events. 3.4.4
The relations between the subnet- 3.4.6
works may be more general than those 3.6
describable by nesting operations
sequences.

CRITICAL_PATH_ Condenses, merges and computes 3.4.2 2.4.28

PROCESSOR critical path data for a master net- 3.4.4
work. Performs executive function, 3.6
which calls NETWORK CONDENSER,
CONDENSED NETWORK MERGER, and
CRITICAL PATH CALCULATOR..

NETWORK EDITOR Identifies and eliminates both 3.4.1 2.4.29
redundant predecessors and cycles
specified in the specification of
precedence networks. Performs
executive function, which calls
ORDER BY PREDECESSOR and REDUNDANT
PREDECESSOR ELIMINATOR.

CHECK_DESCRIPTOR_ Determines if a single assignment 3.4.11 2.4.30

COMPATIBILITY of a job using item-specific resources
with explicit descriptors is (will be)
compatible with existing descriptors
for resources required by that job.
Identifies scheduled jobs that change
the incompatible descriptors.

ORDER BY PREDECESSOR Produces a list of jobs where all 3.4.1 2.4.31
jobs appear in the list only after. 3.6
all their predecessor have appeared; 4.1
i.e., produces a nonunique tech-
nological ordering.

RESOURCE ALLOCATOR Allocates resources to jobs to 3.4.6 2.4.32
satisfy all resource constraints 3.6
and heuristically produce a minimum 4.3
duration schedule. Uses project
scheduling problem model.

RESOURCE LEVELER Reallocates resources to smooth the 3.4.6 2.4.33
usage of resources while maintaining .3.6
schedule constraints. Uses project
scheduling problem model.
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TabZe 3.3-1 (concZ)

Volume II
References

Volume III
Module Name Brief Description of Intended Usage Paragraph Page Specifications
HEURISTIC_SCHEDULING_ Performs both time-progressive re- 3.4.5 2.4.34
PROCESSOR source allocations/job scheduling 3.4.6

and resource leveling. Performs 3.6
executive function for RESOURCE
ALLOCATOR and RESOURCE LEVELER.
Uses project scheduling problem
model.

GUB_LP Solves special-purpose linear 3.6 2.4.35
programs that arise as simplified
models of transportation, distri-
bution, and multi-item scheduling
problems. Uses generalized upper
bounding LP format.

MIXED_INTEGER_ Solves linear programs that contain 3.6 2.4.36
PROGRAM both continuous and integer-valued

decision variables.

PRIMAL_SIMPLEX Solves linear programs that arise in 3.6 2.4.37
the process of solving scheduling
and resource allocation problems
with multi-level algorithms.

DUALSIMPLEX Solves dual linear programs that 3.6 2.4.38
arise as a result of the structure
of multi-level scheduling and re-
source allocation algorithms. Uses
primal simplex format.

INTEGER PROGRAM Solves the linear form of the binary 3.6 2.4.39
decision making problem.

a
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3.4 PROBLEM DESCRIPTION USING THE OPERATIONS MODEL

This section classifies scheduling problem descriptions. The

material is presented in sequence from the simplest scheduling

problem descriptions to the most complex as illustrated in Fig.

3.4-1. Each section briefly discusses an additional generality

to a problem description that results in a more complex problem

from the point of view of programming logic and/or solution method.

The sequence of presentation is a logical one, but the section

does not require beginning-to-end reading to enable the identifi-

cation of descriptive characteristics appropriate for any particu-

lar problem. Furthermore, the presentation sequence does not

imply that any specific problem description will include all gen-

eralities to the left of a particular point in Fig. 3.4-1.
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3,4.1 Simple Predecessor Networks

The simplest scheduling problem model permits only simple

predecessor relationships between jobs. Job A is a predecessor

of Job B if, and only if, Job A is completed at a time before or

equal to the start of Job B. This simple relationship permits

an entire precedence network to be completely defined by a list

of jobs with an associated list of predecessors for each job.

A simple precedence network is illustrated in Fig. 3.4.1-1.

The information contained in the network diagram of Fig. 3.4-1

is shown in Table 3.4.1-1.

Table 3.4.1-1 Basic Information of a Predecessor Network

Job Predecessors

Mate External Tank --
to SRBs

Mate Orbiter to Mate External Tank to SRBs
External Tank Perform Payload Operations

Refurbish Launch Pad

Perform Payload

Operations

Perform Crew Perform Payload Operations
Training

Launch Perform Crew Training
Mate Orbiter to External Tank
Refurbish Launch Pad

Refurbish Launch Pad
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Perfom Perform

Payload Crew

Operations Training

Mate

Begin Mate Orbiter to

Operations External External Launch

Cycle Tank to Tank

SRBs

Refurbish
Launch

Pad

Fig. 3. 4. 1-1 A Predecessor Network Examope



Elementary operations can be performed with the simple

precedence network defined. If, in the example, "Perform Payload

Operations" were given as a predecessor of "Launch," the specifi-

cation is redundant as long as "Mate Orbiter to External Tank"

is specified as a predecessor of "Launch." In more complex

networks, redundant specifications are easily constructed. There-

fore, the module library includes a module, REDUNDANT PREDECESSOR

CHECKER, that will detect and remove a redundant specification.

It is also common to inadvertently specify a loop in a network.

This is illustrated below:

JOB A
PREDECESSOR

JOB B
JOB B

PREDECESSOR
JOB C

JOB C
PREDECESSOR

JOB A

The module library contains a module NETWORK EDITOR that detects

and eliminates cycles or loops in a network.

A list of jobs and their associated predecessors that consti-

tute a precedence network may be ordered so that each job appears

on the list only after all its predecessors have appeared. The

simple illustration network can be presented in such an ordering

as shown in Table 3.4.1-2.
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Table 3.4.1-2
Ordering Network Jobs by

Predecessors

Perform Payload Operations

Mate External Tank to SRBs

Refurbish Launch Pad

Perform Crew Training

Mate Orbiter to External Tank

Refurbish Launch Pad

Launch

Obviously this ordering is not unique, it represents, however,

a sequence in which jobs could be completed without violating

any precedence constraints. The module ORDER BY PREDECESSORS

produces a proper ordering. An ordering that produces the se-

quence in which all predecessor relationships are satisfied is

called a technological ordering.
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3.4.2 Networks with Job Durations

If job durations are added to the network information, addi-

tional computations can be made. The minimum time schedule can

be determined for this problem model. All paths in the network

for which no unscheduled time is possible in the minimum time

schedule are called critical paths. All other paths contain

slack, i.e., time intervals associated with one or more jobs

within which the start times may be altered without causing a

delay to the minimum time schedule. A simple illustration of

these definitions is shown in Fig. 3.4.2-1. All CPM (Critical

Path Method) and PERT (Project Estimation and Review Technique)

analyses are based on simple networks containing jobs with fixed

durations and predecessor sets. The PLANS module library con-

tains five modules that perform computations on CPM problem

models. They are:

1) CRITICAL PATH PROCESSOR

2) CRITICAL PATH CALCULATOR

3) NETWORK CONDENSER

4) CONDENSED NETWORK MERGER

5) NETWORK ASSEMBLER

The first is an executive routine and the second calculates param-

eters for a simple network. The others provide/computations

associated with more general networks that are addressed in a

subsequent section.
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3.4.3 Simple Resource Pools

If each job in the problem model requires a specified number

of resource units as illustrated in Fig. 3.4.3-2, then the net-

work analysis becomes a project scheduling problem. Stated simply,

project scheduling is network scheduling plus resource/job relation-

ships. In project scheduling, the relationships between each job

and its required resources are quite simple. Each job requires a

fixed number of resource units of one or more types. A pool exists

for each type. A job may be scheduled if the pools contain the

required number of resource units for the duration of the job. An

illustration of a feasible project schedule is shown in Fig. 3.4.3-1

for two resource types and three jobs.

Units of
Resource 1 Maximum Allowable Number of

Resource Units

JOB Requires

Units of A 1 Unit Type 1
Resource 2-- 2 Units Type 2

B 1 Unit Ty.pe 1

JO"B" 1 Unit Type 2

C 3 Units Type 1

1 Unit Type 2

Fig. 3.4.3-1 Feasible Project Scheduling Example

Notice that if the total number of resources had not been con-

strained, all three jobs could have been scheduled concurrently

producing a shorter schedule. Thus adding resource constraints to

the problem model usually does alter the CPM (i.e., simple network

with job durations) schedule.
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5 Cranes Refurbish Indicates Partial

Launch Resource Requirements

Pad for Job

26 Ground Crewmenanes

2 Cranes

Fig. 3.4.3-2
Association of Requirements for Pooled Resources with Network Jobs



It is obvious that the problem model for simple project

scheduling utilizes pooled resources and that each job selects

indiscriminately from the pools and returns resources to the

pools upon completion. A job utilizes prescribed quantities

from the pools. From the resource point of view, the job creates

an assignment interval during which these quantities are de-

scribed as "in process" until the job is completed, at which

time they are described as "available." The descriptors "in

process" and "available" are called implicit descriptors because

they can be inferred from the existence of an assignment inter-

val; i.e., if we know that Job A uses three units of Resource 1

and Job A is scheduled, then we know implicitly that three units

of Resource 1 have the descriptor "in process" during the dura-

tion of Job A. The resources used in the project scheduling

problem model can, therefore, be described as pooled resources

withimplicit descriptors only. Although this description appears

at this point to be a terminology overkill, it will be useful

later in distinguishing the project scheduling model from more

generalized models.
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3.4.4 Events in Job Networks

It is useful to be able to place events into a network in ad-

dition to jobs. An event may be thought of as a zero duration

job that requires no resources. This function is illustrated in

Fig. 3.4.4-1. Its basic usefulness is to permit the integration

of two or more networks. A large network may be decomposed into

smaller networks by defining the interfacing events between the

smaller networks. This may permit network analysis to be accom-

plished on networks that are too large to be analyzed without

decomposition.

The PLANS module library contains several routines that per-

form operations on generalized networks. The PROJECT_DECOMPOSER

identifies networks within larger networks so that analyses can

be performed independently on the smaller networks. The NETWORK

CONDENSER module eliminates the jobs in a network leaving only

the events. The branches in such an event node network represent

delay times. The condensation of a network permits a CPM analysis

on a very large network using decomposition principles. The

PREDECESSOR SETINVERTER module converts all predecessors in a

network into equivalent successor sets. This inversion is nec-

essary for performing a CPM analysis (the CRITICAL_PATH_PROCESSOR

and CRITICALPATHCALCULATOR modules are applicable) or for con-

densing a network into an event node network.

The permissibility of events in networks allows the problem

analyst to describe complex networks in terms of subnetworks with

interfacing events. A subnetwork is itself a network, which
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contains the immediate predecessors and successors of all its

member jobs or events that are not interfacing events. Because

any subnetwork may, itself, have one or more interfacing events

to still other subnetworks, a heirarchical relationship between

networks can be described. Scheduling with resource constraints

may require a single master network. This capability is provided

in the library by the NETWORK_ASSEMBLER routine.
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3.4.5 Job Splittability

The simple network can be generalized slightly by permitting'

splittable jobs as illustrated in Fig. 3.4.5-1. Splittable jobs

are jobs that can be terminated before completion and restarted

from the interrupt point at any later time. The sum of the dura-

tions of the job segments is equal to the duration of the original

job. The HEURISTICSCHEDULING_PROCESSOR module and the three

modules it calls, all permit the description of jobs that are

splittable or nonsplittable.
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3.4.6 Variable Resource Requirements

A simple generalization of the problem model is possible while

maintaining compatibility with the project scheduling module called

the HEURISTIC SCHEDULING PROCESSOR. This generalization permits

piecewise constant resource profiles such as that shown in Fig.

3.4.6-1.

The PLANS library modules that have been specified for solv-

ing project scheduling problems are all capable of handling piece-

wise constant resource profiles associated with any job. When

many resource pools are included in the problem model and when

these resources are shared between many jobs, the resolution of

resource conflicts becomes a significant problem. This can be

appreciated by examining Fig. 3.4.6-2, which illustrates only

two resources associated with three jobs. The modules specified

for the PLANS library will satisfy the complex resource constraints

associated with a large number of resources and jobs. The

HEURISTICSCHEDULING PROCESSOR serves as the executive module,

which calls the NETWORKASSEMBLER, the RESOURCE_ALLOCATOR, and

the RESOURCE LEVELER modules. See Section 3.6.

Just as the resource requirements for a single job may be

variable, so can the total resource pool levels be variable with

time. Figure 3.4.6-3 illustrates a profile that reflects the

fact that fluctuations will occur in available manpower.
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3.4.7 Item-Specific Resources

Many scheduling problems cannot be adequately formulated using

resource pools. This usually results from the necessity to keep

track of the assignments for specific resource items. For ex-

ample, it might not be acceptable to produce a schedule that pro-

vided only the information that one truck (from a pool) was used

from 9:00 am to 9:12 am. It is only acceptable to specify that

truck number 90526 was used. When specific traceable assignments

are required, the problem model must include "item-specific re-

sources." Some item-specific resources that might be required

by the jobs in the illustration used in previous sections are

shown in Fig. 3.4.7-1. The inclusion of item-specific resources

in the operations model permits resource allocation to be coupled

into scheduling. Problems using item-specific resources are those

that require the determination of not only when a job is to be

done and how many resources are to be used, but also which re-

sources are to be used. Table 3.4.7-1 provides several examples

of pooled and item-specific resources. Because the use of item-

specific resource descriptions adds to the complexity of the prob-

lem model, solutions require more sophisticated techniques that

are much more costly to execute. In addition, tracking all item-

specific resources adds substantially to computer storage re-

quirements. Thus, the use of item-specific resources should not

be done unnecessarily.
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Table 3.4.7-1
Examples of Pooled and
Item-Specific Resources

Pool Item-Specific

Crewmen Jones
Clayborn
Betts
Blackburn

Vehicle Seating Bus 6

Units Shuttlebus
Van

Food Units Meal 6
Supplement 2
Meal 4

Computer Storage Disc. 2

Cells Tape 6
Core Block 2

Machines Lathe 1
Auto Lathe
Lathe 6
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3.4.8 Resource Alternatives

Many problems require the consideration of alternative (sub-

stitutable) resources, as illustrated in Fig. 3.4.8-1. These

alternatives may be directly substitutable (i.e., an adjustable

wrench may be substituted for an open-end wrench) or only func-

tionally comparable (i.e., a conveyer may be functionally equiva-

lent to three laborers). The.selection between alternatives may

be based on a preset priority with the availability of the re-

source as the criterion. Other alternatives may influence some

problem "figure of merit" such as duration, total cost, or re-

source utilization smoothness. In this case, an executive logic

could be empowered to evaluate the effects of its selections.

Typically a heuristic decision rule must be used to make the

selections between resource alternatives during the algorithm

operations.

Within the operations model, the required resources are de-

fined in the definition of a process as a series of "and" and "or"

resources. That is, a process requires each of the resources of

the "and" portion plus one of the alternatives of each partition

of the "or" section of the process definition. This approach

readily identifies those resources in a process definition that

have suitable alternatives.
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3.4.9 Process Alternatives

Process alternatives such as the one shown in Figure 3.4.9-2

may arise in a problem description as a means of handling resource

alternatives or because a processing option must be modeled. A

conversion from resource alternatives to process alternatives

results if each combination of resource alternatives is consid-

ered as a distinct process. (See Fig. 3.4.9-1.)

Hand Wrench Change
Tire

Manually

Hand Wrench

OR Change OR

Wrench

RESOURCE PROCESS
ALTERNATIVE ALTERNATIVE

Fig. 3.4.9-1
Conversion from Resource Alternatives
to Process AZternatives

This approach becomes very cumbersome if many of the resources

required for a process have alternatives because each combination

of resource alternatives implies a unique process definition. A

substitutable process is created either by alternative resource

combinations or by the existence of functionally equivalent and
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and redundant activities (i.e., any number of the required re-

sources may be different). In network form, these process alter-

natives can be shown as in sketch A where process B and C represent

the alternatives. Similarly, alternative subnetworks can be spec-

ified if more than one process is involved in the alternative

subnetworks. For example, the subnetworks B and C, as shown in

sketch B, would define alternative subnetworks.

In subsequent discussions of the operation model, networks

and subnetworks are referred to as operations sequences, because

the latter term is more descriptive of the temporal relations

between processes.

At this point it may be necessary to make a distinction be-

tween alternative operations sequences and conditional branches

in formulating his solution strategy. For this purpose, consider

the "alternative operations sequences" as functionally equivalent
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subnetworks for which the selection criterion is based on a prob-

lem objective such as least -cost, minimum time, resource avail-

ability, etc. This decision would, therefore, have to depend on

the contents of the subject subnetworks and a prediction or simu-

lation of the impact of choosing each alternative. In contrast,

consider a "conditional branch" as a switch between separate sub-

networks, which may or may not be functionally the result of ac-

tivities completed earlier in the network. This selection would

be independent of the overall problem objective function and,

therefore, independent of the contents of the subnetworks.

To illustrate this distinction, consider a machining activity

in which a part may be produced by either mechanical milling or

chemical milling. Each method could be modeled as a subnetwork

in a larger shop model. Because the beginning and end states of

the particular part are identical, the selection of method to be

used could be based on comparative cost or duration, or possibly

some other problem constraint such as least manpower required.

Thus, these functionally equivalent subnetworks would be "alter-

native operations sequences." Conversely, a Shuttle operations

model might contain two or more subnetworks that define checkout

sequences for payloads. The selection criterion in this case

would depend on the characteristics of the payload under consid-

eration. Because the particular payload would be selected earlier

in the operations "loop", the "conditional branch" selection

would not be based on an objective function of the problem or

contents of the subnetworks, but on operational constraints.
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3.4.10 General Temporal Relations

Occasionally, the sequences between processes must be described

with relationships that are more general than the simple prede-

cessor relationship (If the end of activity A must occur before

the beginning of activity B, then A is simply a predecessor of B.)

In a more general operations model, however, other temporal re-

lationships may exist such as the one illustrated in Fig. 3.4.10-1.

If a set of "alternative operations sequences" exists in a

network (as shown in the sketch), it would be incongruous to spec-

ify both alternatives as predecessors to the subsequent activity

(D) because both predecessors cannot be completed. However, it

is necessary to indicate the direction of flow regardless of the

alternative selected. In this case, unambiguous specification

would label the subsequent activity (D) as a "successor" to both

alternatives.

D

Temporal relations that are more general than either prede-

cessors or successors may be represented as

{i { }fi {} K

where i and j are any activities or events in the project and "s"

denotes a start time while "f" signifies a finish time. The
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addition of fixed time intervals (K) or inequalities containing

constant time intervals has many applications in system modeling.

For example, a system involving the pouring of concrete may have

a constraint specifying that the troweling activity must begin

within 30 minutes of completion of the pouring. Similarly, an

activity involving a sealing coat may be constrained not to start

within 48 hours of completion of the pouring activity. The PLANS

module library contains three modules that can be used with gen-

eral temporal relationships. These are CHECKEXTERNAL_TEMP_

RELATIONS, CHECK_INTERNAL_TEMP_RELATIONS, and CHECK_ELEMENTARY

TEMPRELATION. All perform checking for constraint satisfaction.

Our approach to handling the generalized temporal relation-

ships is to reduce the network to closely continuous and ordinary

predecessors or successors by introducing "dummy" activities.

Dummy activities have finite durations, but differ from regular

activities in that no resources may be required. Thus, they rep-

resent a span of time in a network or subnetwork. 'Closely con-

tinuous' implies that the end time of a preceding activity equals

the start time of the successor activity. Although methods exist

for handling general temporal relationships, they are substantially

more complex than methods that handle only predecessors and suc-

cessors. The modeler is, therefore, encouraged to use general

temporal relationships only when simple predecessor/successor

relationships have proven inadequate.
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3.4.11 Item-Specific Resources with Explicit Descriptors

Processes require many resources that change their previous

characteristics and thus must have additional explicit descriptors.

For example, in Fig. 3.4.11-1, the job "Mate Orbiter to External

Tank" is shown to require one orbiter with a status descriptor

REFURBISHED. It is a property of explicit-descriptors that they

change only at the end of the process time and that the way they

change must be specified explicitly as a part of the process def-

inition. For example, if a given resource, Truck 87, had been

assigned to two activities that first loaded the truck and then

drove it to Los Angeles, it might have a descriptor LOAD STATUS

with a corresponding value LOADED, and a descriptor LOCATION with

a value LOS ANGELES. These data would be retained as part of

the two assignments for the resource. If a subsequent activity

moved the truck to San Francisco, the result would be to change

the descriptor LOCATION. The descriptor LOAD STATUS would be

unaffected by the current process and any inquiry concerning

Truck 87 at a subsequent time would find the loaded truck in San

Francisco. (Because the driver is considered a separate resource,

it should not be inferred that the driver was found loaded in

San Francisco!)

It should be noted that explicit descriptors must have mutually

exclusive values for any given descriptor. That is, if, in the

example just discussed, the truck were moved to DOCK 23, an ad-

ditional descriptor (i.e., DOCKLOCATION) should be added if the

location SAN_FRANCISCO were to be retained.
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It should also be noted that if activities are being placed

on a timeline ahead of some previously scheduled activities (time-

transcendant scheduling), the resource profile for all times later

than the new activity may be altered. The module library contains

a routine called CHECK DESCRIPTOR COMPATIBILITY, which determines

conflicts that would result in attempting to schedule a job re-

quiring an item-specific resource with explicit descriptors.
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3.4.12 Pooled Resources with Explicit Descriptors

Pooled resources represent a very difficult extension of the

generalization capability of explicit descriptors. Because ex-

plicit descriptors alter a resource so that it does not revert

to its original state at the end of the scheduled activity, a

pool is continually repartitioned as resources are allocated to

various activities. This repartitioning is illustrated in Fig.

3.4.12-1. Since it is necessary to know from which partition a

set of resources is to be drawn, it becomes necessary to describe

the partitioningof the entire pool for each assignment made.

This obviously becomes very cumbersome as the size of the pool

or the number of assignments grows. The problem is compounded

if time-transcendent scheduling is attempted or if activities

previously scheduled must be unscheduled. The module POOLED

DESCRIPTOR_COMPATIBILITY is designed to identify the descriptor

conflicts that occur when attempting to insert a job on the time-

line that requires pooled resources with explicit descriptors.

When unscheduling, pooled resources for all activities occurring

at a later time must be repartitioned to reflect the unscheduled

resources.

Both of these techniques become extremely.cumbersome and time-

consuming as the size of the problem increases. If the explicit

descriptors required to describe a given resource can be antic-

ipated and the number of such descriptors is small, the various

partitions of the pooled resource can, themselves, be considered

a pooled resource. In this case, the pooled resource can be
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treated as if it had only the implicit descriptors of IN PROCESS

or AVAILABLE, thereby avoiding the complexity of modeling using

pooled resources with explicit descriptors. Although data struc-

tures, conventions, and library modules are provided for schedul-

ing that accommodate the most complex problem models, it is rec-

ommended that substantial effort be devoted to analyzing modeling

alternatives that will permit greater use of well-developed tech-

nology and substantially less demanding logic design and checkout

efforts. Alternatives include the definition of separate pools

without explicit descriptors for each anticipated partition, and

the substitution of item-specific resources with explicit des-

criptors for elements of the pool.
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3.5 OPERATIONS MODEL DATA STRUCTURES

This report has discussed the basic data structure of PLANS

and presented the rationale for assuming a general hierarchical

form. It should be noted that any "standardized" modules must

make some assumptions as to the location of particular data within

the overall structure. Therefore, this section defines some

standard data trees for modeling an operational system. The trees

discussed are summarized in Table 3.5-1. These standardized trees

are an important part of the Operations Model, which is used as

a framework for the library modules specified in Volume III. Ob-

viously, these structures may be augmented to accommodate partic-

ular program peculiarities as the programmer deems necessary, or

may be disregarded completely if no modules are used that assume

the standardized structures. It should be recognized that the

trees are defined from a "modeling" viewpoint and that few, if

any, modules will use the entire content of any given tree. The

"mandatory" contents assumed by each module for any given tree

structure are defined in the functional specification of that

module. No modules have been specified for the library that

recognize the absence of required data and initiate logic to sup-

ply the missing data. PLANS coding can be used to build such

routines, however. For example, logic that reads a node called

DURATION and, finding no numeric value, calls a routine whose

name appears as the value is easily written in PLANS. Neverthe-

less, no PLANS library modules contain such logic. Therefore,
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it is the programmer/user's responsibility to ensure that required

data are supplied to a called library module. In general, the

order of nodes at a given level is insignificant.

Table 3.5-1 Operations Model Data Structures

The problem descriptions of Section 3.4 can be represented as

hierarchical data trees compatible with the PLANS language.

User-Defined Data Trees are

$RESOURCE Describes the resources of the system
(3.5.1)

$PROCESS Describes the activities of the system
(3.5.2)

$0OPSEQ Describes the operational sequences of
the system (3.5.3)

$OBJECTIVES Describes the objectives and constraints
of a problem

The problem descriptions of Section 3.4 can be used in PLANS
programs to generate schedules and/or resource allocations.

The information associated with problem solutions can also be

represented in hierarchical data trees compatible with the

PLANS language.

Program-Created Data Trees are

$JOBSET Describes each single occurrence of a
process of a problem (3.5.5)

$SCHEDULE Describes each job and the associated
resources that are assigned to a spe-
cific time interval (3.5.6)

ASSIGINMENT Subnode Describes the assignments made for each

of $RESOURCE resource of a problem (3.5.7)

The Operations Model.standard data trees can be classified

either as user-defined or as program-created as shown in Table

3.5-1. User-defined data trees are structures built by a user to

describe the system of interest. They provide the mechanism by

which the user provides data to the program. Program-created
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data trees are generated during the execution of the scheduling

logic. These fundamental structures are created or used by many

of the library modules. Therefore, they serve to integrate the

modules and should form a basis for specific program executive

logic.
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem



3.5.1 $RESOURCE

$RESOURCE provides the structure to define all supplies, ele-

ments, or resources needed to perform any activities to be modeled

in the system of interest. This definition includes the quantity

and characteristics of the resource as well as a record of allo-

cations or ASSIGNMENTS made for the given resource. (Because

the ASSIGNMENTS are not defined by the user but result from ex-

ecution of the program, this portion of $RESOURCE will be discussed

in the next section). As illustrated in Fig. 3.5.1-1, $RESOURCE

provides two levels of resource classification; these are arbi-

trarily referred to as TYPE and NAME. These two levels allow

relatively quick access to a specific resource or a given class

of resources. The lower level of classification (resource name)

may define either an item-specific resource or resource pool.

As discussed previously, it is necessary to distinguish be-

tween item-specific and pooled resources. Therefore, the next

sublevel contains a node labeled CLASS with expected values being

either SPECIFIC or POOL. In addition, this level provides the

initial time and description of the given resource. This descrip-

tion has a node for each descriptive parameter required. The

node label names the parameter and the node value gives the cor-

responding parametric value. Thus, descriptive characteristics

such as length, weight, color, location, etc that apply to the

resource at the initial time may be specified.
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Initial quantities for pooled resources may be time-varying.

To accommodate this possibility, a node labeled INITIAL PROFILE

appears in $RESOURCE. The substructure under this node provides

the mechanism for defining variable piecewise constant profiles

for both normal and contingency quantity levels. The profile

data are typically used with project scheduling techniques. It

should be stressed that all the values under the INITIAL PROFILE

node and the other nodes at that level represent initial values.

Any subsequent changes to the descriptive characteristics re-

sulting from assignments to specific processes would be recorded

in the assignment portion of $RESOURCE. See Section 3.5.6.

An illustration of the use of $RESOURCE for a Shuttle appli-

cation is shown in Fig. 3.5.1-2.
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem
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3.5.2 $PROCESS

This data structure defines the activities or processes of

the system to be modeled. Obviously, the level of detail to be

included determines the content of the $PROCESS tree. For ex-

ample, a top-level analysis of a system may group many activities

into one process with a corresponding total duration. In such

instances some or all of the resources involved in the activities

may not be specified. In contrast, the problem objective may

require such detail as the skill profile of each person who is

considered a resource, and/or variable use of resources during

the process time interval. The structure of $PROCESS, as shown

in Fig. 3.5.2-1, allows both extremes to be modeled. Again it

should be emphasized that only applicable portions of the struc-

ture need to be specified. Thus, conceivably, a process defini-

tion could consist of as little as the process name and a cor-

responding duration.

The first level subnodes to the process name define the proc-

ess duration and type. In this usage, type refers to whether or

not a process may be split into segments to facilitate scheduling

around constraints. Expected values would be either SPLITTABLE

or NOT SPLITTABLE. A programmer may wish to provide a default

value for type to permit simplification of program input, but

the functional specifications for library modules leave all de-

fault nodes to the discretion of the implementer. This level also

labels the nodes needed to define the relationship of resources

to the process being defined.
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.ROCESS

( NAME) (NAME) (NAME)

DURATION REOUIRED RESOURCES RESOURCE ALTERNATIVES RESOURCES GENERATED RESOURCES DELETED PROCESS TYPE

(VALUE) ("SPLITABLE' "NONSPLITTABLE" I

(TYPE) (TYPE) ( YPE) A 4

(NAME) (NAME) (NAME) (TYPE) (TYPE)

INTERVAL DESCRIPTORS

START END

(VALUE) (VALWE

INITIAL FINAL

QUANTITY (PARAMETER) 0 * *

(VALUE) (VALUE) (VALUE) (VALUE)

Fig. 3.5.2-1 $PROCESS Standard Data Structure



The substructure of REQUIRED_RESOURCES contains the most spe-

cific information required to ensure a satisfactory resource se-

lection for the process. Thus, if any resource of a given type

(first sublevel to REQUIREDRESOURCE) will suffice, only the

resource type is defined. (The name level is left null.) Con-

versely, a process may require a resource of a given type and

name, and in addition require a particular value of a given

descriptor at the initiation of the process. In this instance,

an INITIAL DESCRIPTOR would be specified for the given resource.

As illustrated in the structural diagram of $PROCESS, any number

of resource types and/or names may be required by a given process.

It is assumed that each resource denoted by a node at the name

level is required to complete the process. For each resource

name (indicated by a node), any number of descriptors may be spec-

ified for a given time interval. It is assumed that any initial

descriptor defines a requirement on the resource that must be

met for a resource to be an acceptable candidate. A FINALDES-

CRIPTOR only indicates a change in a particular descriptor re-

sulting from the accomplishment of a process. The START and END

values specified for a given INTERVAL will define an interval

relative to the process duration. Thus, if the value of DURATION

is 10, a START and END value of 5 and 10, respectively, would

indicate that the resource was only required for the last half

of the process.
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Processes are the mechanism for associating resources with

activities. For this reason, multiple requirements for resources

defined within a single process will be satisfied by a collection

of resources and the assignments of each resource will be identi-

fied by the process.name but not by a separate requirements iden-

tifier. For example, a single process that has a requirement for

one crewman and another requirement for a different crewman will

ultimately cause two crewmen to have assignments identified by

the process name. It is assumed that the association of each

crewman with a particular requirement will not be preserved. If

the association is to be preserved, two separate processes should

be defined. In the Operations Model, a process contains a set

of requirements to which resources can be assigned unambiguously.

The format of the data structures subordinate to ALTERNATE

RESOURCES, RESOURCES GENERATED, and RESOURCES_DELETED is similar

to that for REQUIRED_RESOURCES, but functionally, each serves a

different purpose. ALTERNATE_RESOURCES defines any number of

sets of alternative resources. Each set is represented with a

nuZZll label (shown as "C" in Fig. 3.5.2-1). It is assumed that

one alternative from each set must be provided for completion of

a given process. Thus, an executive program must consider both

nodes, REQUIREDRESOURCES and ALTERNATERESOURCES, when determin-

ing the availability of resources required to complete a process.

RESOURCESGENERATED and RESOURCESDELETED specify what happens

to resources during a process. In some cases resources will be as-

sembled (or disassembled) to create new resources. Correspondingly,
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the initial elements will no longer exist as the described re-

source. For example, if a process mates an Orbiter to a stack,

the resulting assembly may be referred to as a Shuttle. In this

case, the resource Orbiter and stack would be described as

RESOURCES DELETED and the-resource Shuttle would be a RESOURCE

GENERATED. These nodes, therefore, allow a means of traceability

for a particular resource. These two substructures also describe

resources that are usually thought of as "expendables" or "con-

sumables". A resource, such as power, dollars, or fuel, that is

in fact consumed and will not reappear in the system at a later

time, would be a deleted resource. Similarly, a "negative" con-

sumable, such as the refining of a petroleum product, would create

resources during a process. An illustration of a portion of

$PROCESS for a Shuttle application is shown in Fig.. 3.5.2-2.
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$PROCESS
RECYCLE SRB

DURATION - 11
REQUIRED RESOURCES

SRB
SRB

INTERVAL
START - 0
END - 11

DESCRIPTORS

INITIAL
QUANTITY - 2
STATUS - TO BE RECOVERED

FINAL
QUANTITY - 2
STATUS - TO BE ASSEMBLED

ASSEMBLE SRB PAIR
DURATION - 0.4
REQUIRED RESOURCES

SRB
SRB

INTERVAL
START - 0
END - 47

DESCRIPTORS

INITIAL
QUANTITY - 2
STATUS - TO BE ASSEMBLED

FINAL
STATUS - TO BE MATED

VAB HIGH BAY
VAB

INTERVAL
START - 0
END - 47

DESCRIPTORS

INITIAL
STATUS - AVAILABLE

FINAL
status - IN USE

PERSONNEL
SRB/EXT TANK CREW

INTERVAL
START - 0
END - 47

DESCRIPTORS

INITIAL
QUANTITY - 30
QUALIFICATIONS - ASSEMBLE SRBS

LAUNCH UMBILICAL TOWER
LUT

INTERVAL
START - 0
END - 47

DESCRIPTORS

INITIAL
QUANTITY - 1
STATUS - AVAILABLE

FINAL
STATUS - IN USE

RESOURCES GENERATED
SRB PAIR

SRB PAIR

DESCRIPTORS

FINAL
QUANTITY - 1

RESOURCES DELETED
SRB

SRB

DESCRIPTORS

INITIAL
QUANTITY - 2

FINAL
QUANTITY - 0

Fig. 3.5.2-2
Use of $PROCESS for a Shuttle
Application
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THIE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem
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3.5.3 $OPSEQ

The operations sequence data structure serves to define the

relationship between processes that are combined into a network.

As illustrated in Fig. 3.5.3-1, the labels of the first level

subnodes are the names of different operations sequences. The

labels of the second-level subnodes are the names of the elements

of the above-named operations sequence. The element is either

a process or another operations sequence; if it is an operations

sequence, its name will also appear elsewhere at the first level

to define its substructure. If the element is a process, its

characteristics are described by the $PROCESS tree. The element

TYPE is defined by the next level subnode with an expected value

of either PROCESS or OPSEQ. The module CHECK PROCESS DEFINITION

provides a capability to check whether all processes referred to

in the nested operations sequences are defined in $PROCESS.

This level also defines the general temporal relationship of

an element to any other element in the same operations sequence.

This data structure (see Fig. 3.5.3-2) allows the user to specify

classical predecessors and successors as well as generalized tem-

poral relations. The general temporal relation is specified by

six ordered subnodes as indicated in Fig. 3.5.3-2. (It is pos-

sible that appropriate labels could be designated, and interpreted,

to eliminate the requirement to be ordered, but since the order

is logical and unambiguous, the labels have not been assumed by

any library modules.)
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(OPSEQ NAME) (OPSEQ NAME) (OPSEQ NAME)

(PROCESS OR (PROCESS OR (PROCESS OR
OPSEQ NAMB OPSEQ NAME) OPSEQ NAME)

TYPE TEMPORAL RELATIONS ALTERNATIVES

("PROCESS" | "OPSEQ") (SEE GENERAL SUBSTRUCTURE)

Fig. 3.5.3-1 $OPSEQ Standard Data Structure
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PREDECESSORS SUCCESSORS GENERAL

(VALUE) (VALUEI (VAWE) (VALUE) (VALUE) (VALUE)

(JOB REF TIME) (LOCICAL RELATION) (OTHER JOB REF TIME) (OTHER JOB) (ARITH OPERATOR) NUMERIC CONSTANTI

f'START' I "END"I '" "I"i" I " " ("START' I "END"I (VALUE) r + " "- I (VALUE)

Fig. 3.5.3-2 General Substructure for TEMPORAL_RELATIONS
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Finally, any alternatives to an element may be listed as

values of subnodes to ALTERNATIVES. Alternatives represent OR

gates in an operations sequence. As discussed in the previous

section, these alternatives may be either processes or operations

sequences.

An illustration of the use of $OPSEQ for a Shuttle application

is shown in Fig. 3.5.3-3.

140



SOPSEQ
SHUTTLE SYSTEM MISSION FLOW

ASSEMBLE SRB PAIR
TYPE - PROCESS

PREPARE EXT. TANK
TYPE - PROCESS

MATE EXT. TANK TO SRB
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
ASSEMBLE SRB PAIR
PREPARE EXT. TANK

MATE ORBITER TO EXT. TANK
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
MATE EXT. TANK TO SRB
PREPARE ORBITER FOR LAUNCH

SERVICE SHUTTLE FOR LAUNCH
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
MATE ORBITER TO EXT. TANK & SRB

LAUNCH PHASE OPERATIONS
TYPE - PROCESS
TEMPORAL RELATIONS

GENERAL
C

START
EQUAL TO
END
SERVICE SHUTTLE FOR LAUNCH

PREDECESSOR
PREPARE CREW FOR FLIGHT

PREPARE CREW FOR FLIGHT
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
PERFORM MISSION BRIEFING

GENERAL

END
EQUAL TO
END
SERVICE SHUTTLE FOR LAUNCH

REFURBISH LAUNCH PAD
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
.LAUNCH PHASE OPERATIONS

RECYCLE SRB
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
LAUNCH PHASE OPERATIONS

PERFORM ON-ORBIT OPERATIONS
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
LAUNCH PHASE OPERATIONS

DEORBIT, REENTRY AND LAND
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
DEORBIT, REENTRY AND LAND

RECYCLE ORBITER
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
DEORBIT, REENTRY AND LAND

PERFORM CREW TRAINING OPS
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
PERFORM PAYLOAD OPS

PERFORM MISSION BRIEFING
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
PERFORM CREW TRAINING OPS

PERFORM PAYLOAD OPS
TYPE - PROCESS

PREPARE ORBITER FOR LAUNCH
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
PERFORM PAYLOAD OPS

Fig. 3.5.3-3
Use of $OPSEQ for a
Shuttle Application
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem



3.5.4 $OBJECTIVES

The three previous data trees provide a method for describing

an operational system (or any number of systems). These trees

may be constructed at any time and stored and are independent of

the particular problem of interest at any given time. As a mat-

ter of fact, they are independent of the scheduling function for

which they will probably be used. However, there also exist cer-

tain data that are required as input for a particular problem con-

cerning a given system. These data may be structured in a variety

of ways, and will contain different information for different

problems. $OBJECTIVES, as defined here, presents some data needed

by certain library modules in a structure that may be used and

augmented by a program developer. As programs are developed in

PLANS, $OBJECTIVES will certainly evolve beyond those presented

here with additional conventions and structure.

As shown in Fig. 3.5.4-1, the first level subnodes include

a method of inputing a problem name. Obviously, other problem

identifiers may be included by additional nodes. A Figure of

Merit node is shown to indicate a location for the name input

for a routine that calculates the objective function of the prob-

lem. Because none of the specified library modules require these

particular data, the detailed specification is not provided here.

Similarly, a CONSTRAINT node is indicated for probable inclusion

by a user of $OBJECTIVES. These constraints would apply to the

overall problem--not to a specific process or operations sequence.

Constraints could include the earliest and latest start and end
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$OBJECTIVES

PROBLEM NAME FIGURE OF MERIT OPSEQ CONSTRAINT

(VALUE) (VALUE)

(PROCESS ORNOPSEQ NAME) (PROCESS OR OPSEQ NAME) (PROCESS OR OPSEO NAME)

ASSOC I ATED ALTERNATIVES
TYPE TEMPORAL RELATIONS RESOURCES

("PROCESS" I "OPSEQ9" (SEE GENERAL SUBSTRUCTURE (SEE SUBSTRUCTURE OF $PROCESS.
(NAME). REOUIRED RESOURCES)

Fig. 3.5.4-1 $OBJECTIVES Standard Data Structure



times (absolute times), maximum total duration, and/or specific

"windows" that may or may not be used for scheduling. For ex-

ample, a given shop operation to be scheduled may have an earliest

start date specified because of expected shipping.of supplies.

Also, all weekend dates may be unavailable for scheduled activities

because the shop works on a five-day work week.

The information in $OBJECTIVES that is required by the cur-

rently-specified library modules is the list of operations se-

quences to be scheduled and any specific resources to be associated

with any process or operations sequence. The first level subnodes

to OPSEQ list the processes and/or operations sequences that must

be scheduled for successful completion of a problem. The next

sublevel lists the TYPE (either PROCESS or OPSEQ) and any temporal

relationships that exist between that element and any other ele-

ment under OPSEQ. The format of the temporal relationship is the

same as discussed in the preceding section on $OPSEQ. Obviously,

one way of setting up a problem would be to create an operations

sequence in $OPSEQ containing all the elements desired for a given

problem. Then $OBJECTIVE would only list one operations sequence

to be considered and the problem input would be greatly simplified.

In fact this would be a recommended approach if a similar problem

were to be considered numerous times. However, the basic philosophy

has been to consider a more flexible approach in which more ele-

mental subnetworks are created from individual processes. A num-

ber of these operations sequences could then be called out in

$OBJECTIVES to synthesize a given problem. The substructure of
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the ASSOCIATED RESOURCES is the same as the $PROCESS.(NAME).REQUIRED

RESOURCES) substructure and is used to specify any specific resources

the user wants associated with the corresponding operations se-

quence. It is assumed that the characteristics of the particular

resource have previously been filed in the $RESOURCE tree. This

substructure would be used if the user wished to execute an op-

erations sequence such as LAUNCH PAYLOAD three separate times

with an associated resource for each launch of PAYLOAD 14, PAYLOAD

27, and PAYLOAD 87, respectively.

An example of the use of $OBJECTIVES for a specific problem

appears in Section 4.2.
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3.5.5 $JOBSET

This data tree will be created near the beginning of a prob-

lem from the three defined data trees $OBJECTIVES, $OPSEQ,

and $PROCESS by the module GENERATE_JOBSET (see Volume III). As

illustrated by Fig. 3.5.5-1 this tree combines processes with all

required resources (whether they are specified or generic) into

jobs. Thus, a job is a single occurence of a process and is the

element of the.Operations Model that is scheduled by the solution

algorithm. Once created, $JOBSET contains most of the input data

required to work a given problem and makes further reference to

the stored trees $OPSEQ and $PROCESS unnecessary.

The first-level subnodes of $JOBSET represent a collection

of single occurrences of the processes in an operations sequence.

The descendents of these nodes are unique job identifiers. The

first level subnodes to the job identifiers specify a JOBTYPE,

which indicates whether a job may be interrupted and scheduled

in more than one segment. The JOB_INTERVAL node contains a rela-

tive interval equal to the duration of the process involved. The

substructure of RESOURCES will be created for each required re-

source and the most specific input information. Other informa-

tion such as identifiers, alternatives, and temporal relation-

ships to other jobs are also included in $JOBSET.

147



$JOBSEI

(SUBNET IO) (SUBNET lot

41-4

01JOB I) (0 ID) (JOB ID)

(JB TYPO PROBLEM NAME OPSEQ JOB INTERVAL PROCESS REQUIRED RESOURCES ALTERNTITSAERNATIVES

PSPLITTABLE" I "NONSPLITTABLE" NAUE NAlIE)( NUE

START END (TYpE (TYPE)

(VALUE) 
E

QUANTITY (PARAMETER) 00*0 00

(V(NAMUE (ALU) ((AE) ( VAL

Fig. 3.5.5-1 $JOBSET Standard Data StructureV

Fig. 3.5.5-7 $JOBSET Standard Data Structure
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem



3.5.6 $SCHEDULE

$SCHEDULE contains the answer to the scheduling problem. That

is, it contains the same jobs as $JOBSET, but now each job in-

terval contains specific times (i.e., not relative) and specific

resources have been identified for each job. No resource or job

alternatives exist in $SCHEDULE because these selections have

been made and no temporal relationships are needed because absolute

times have been assigned for each job. Resource intervals rela-

tive to the job interval have been replaced with absolute times.

In other words, the schedule has been concretized (see Fig. 3.5.6-1

for the basic structure). $SCHEDULE consists of any number of

schedule units, which contain of all of the substructure for any

one job identifier. This schedule unit is considered the smallest

element that may be scheduled. The individual schedule unit

contains all information necessary to maintain a record of re-

source allocations made and corresponding descriptors that apply

to the specified resource and time interval.
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$SCHEDULE

IJO08 t10 (JOB ID (JOB ID)

PROBLEMJOB TYPE NAMEM OPSEQ INTERVAL PROCESS RESOURCES

"SPLITTABLE" "NONSPLITTABLE") VALUE) (VALUE) (VALUE)

START END ( ITYPE)

(VALUE) (VALUE)

(NAME) (NAME)

DESCRIPTORS INTERVAL

START END

(VALUE) (VALUE)

INITIAL ' FINAL

QUANTITY (PARAMETER) 0 * * * * *

(VALUE) (VALUE) (VALUE) (VALUE)

Fig. 3.5.6-1 $SCHEDULE Standard Data Structure
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational

sequences of the system

$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem

$SCHEDULE Describes each job and the

associated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments

of $RESOURCE made for each resource of

a problem



3.5.7 ASSIGNMENT Subnode of $RESOURCE

While the basic inputs to $RESOURCE consist of resources and

their characteristics as defined by a user, an equally important

function of the $RESOURCE tree is to maintain a record of all al-

locations made for each resource. Even though these allocations

are handled by the scheduling program, the close relationship

between the initial resource descriptions and the subsequent des-

criptions brought about by assignments to certain activities,

justifies the existence of both in the same data tree. Therefore,

as shown in the $RESOURCE tree in Fig. 3.5.1-1, all assignments

are recorded as a substructure to the ASSIGNMENT node of $RESOURCE.

Assignments are arranged by increasing start times with equal

start times being ordered by earliest end time. Such an ordering

will facilitate the checking for resources by subsequent schedul-

ing attempts. Each assignment is indicated on the $RESOURCE tree

diagram by a null labeled (€) node. The assignment will consist

of an INTERVAL, DESCRIPTORS, and any other information included

as a corresponding part of the scheduZe unit from which the up-

date of the assignment file is made. Library modules WRITE

ASSIGNMENT and UPDATE_RESOURCE have been designed to accomplish

this update. Additional identification information will have to

be included in the basic schedule unit to allow subsequent un-

scheduling. These data, to be included as first-level subnodes

to the null assignments nodes, could include the problem name, the

operations sequence involved, etc. The library module UNSCHEDULE

has been designed to remove assignments from the $RESOURCE tree.
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The DESCRIPTORS portion of the assignment structure allows

subsequent investigation to determine the history of any given

resource. That is, the state of an item-specific resource or

the partitioning and corresponding quantities of pooled resources

may be determined as a function of time. The library module

RESOURCEPROFILE is designed to determine the quantity in a re-

source pool as a function of time for the pooled resources with

implicit descriptors. Two variables determine the available

quantity of a pooled resource. The assignments affect the avail-

able quantity because any resources assigned are assumed to be

unavailable during the assignment interval. Secondly, resources

may be either generated or deleted as the result of a process.

For purposes of creating a profile, it is assumed that any quantity

deleted or generated is reflected at the end time of the process

interval. This would be indicated by an appropriately labeled

FINAL_DESCRIPTOR with a value of either GENERATED or DELETED. The

corresponding quantity would be indicated with the subnode QUANTITY.

DESCRIPTOR PROFILE is a module that uses the assignment infor-

mation in $RESOURCE to determine the history of changes to the

descriptors for an item-specific resource. These resources have

an initial description that is updated as assignments are made.

Obviously, if a resource is being considered for a specific proc-

ess, it will be necessary to know the current set of descriptors

that apply for a time interval of interest. Also, recognizing

that an item-specific resource may be assembled with other re-

sources to generate a new resource, a FINAL DESCRIPTOR of DELETED
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could apply. Therefore, when assessing the availability of an

item-specific resource, it is not sufficient to check only for

conflicting assignments. A further check must be made of the

final descriptors for the most recent assignment to ensure that

the resource was not deleted. Similarly, an item specific re-

source may be generated (or regenerated) by the disassembly of

a resource.
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3.6 HEURISTIC AND MATHEMATICAL PROGRAMMING SOLUTION TECHNIQUES

An analysis of the state-of-the-art in computerizable shed-

uling techniques leads to the conclusion that two major bodies

of standardized methodology are available (see Appendix). The

first is referred to here as project scheduling and is based on

heuristic scheduling rules. The second is called mathematical

programming and is based on procedures that produce mathematically

optimal solutions. The specified PLANS module library contains

routines in both classes of solution methods. However, each class

of methods is capable of dealing with problem models that have

only limited generality or dimensionality. Problems that are

described with more general models and/or higher dimensionality,

however, will be solved by building problem-dependent logic. While

PLANS is designed to aid in programming such logic, the analyst

will make better use of the PLANS programming system by describing

his problem in a format that makes one of the two standardized

methodologies applicable. If this is done, the capabilities rep-

resented in the module library can then be applied, and will per-

mit much more rapid program development and checkout.

The purpose of this section is to describe the characteristics

of the problem models that are compatible with existing standard-

ized solution methodologies so that the user of both PLANS and

the PLANS module library will have the maximum capabilities avail-

able to him. It should be noted at this point that nothing in

PLANS precludes its use with nonstandard methodologies. To be sure,

PLANS makes customized scheduling logic much easier to program.
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Similarly, the module library is not limited to capabilities as-

sociated with project scheduling, mathematical programming, or

solution methods; in fact, many of the modules perform'functions

that must be performed in typical problem-dependent scheduling

logic.

Combination of the generalized network modules and the re-

source allocation and smoothing modules specified for the module

library constitutes a project scheduling system that is applicable

to very large problems that have the problem models described

above. The logical relationships of these modules is shown in

Fig. 3.6-1. The collection of project scheduling modules provides

state-of-the-art solution capability for that class of problems.

It should be noted that each individual module performs a separ-

able and useful function in its own right and thus may be used in

any custom-made logic that the user designs. Executive modules

(i.e., NETWORK EDITOR, CRITICALPATH_PROCESSOR, and HEURISTIC_

SCHEDULINGPROCESSOR) are also provided, however, that call other

modules in order to execute a particular solution strategy. This

strategy produces near-minimal time schedules, which satisfy both

resource level constraints and network constraints (precedences)

and also produce smoothed resource demand profiles.

The problem characteristics that are accommodated by the

PLANS project scheduling modules include those described in Sub-

sections 3.4.1 through 3.4.5 and illustrated in Fig. 3.6-2. In

addition, project scheduling techniques can be applied to more

general problem descriptions by applying special reformatting
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NETWORK NETWORK PRECEDENCE NETWORK

EDITOR - DECOMPOSER SET INVERTER ASSEMBLER

REDUNDANT
ORDER BY PREDECESSUR
PREDECESSOR ELIMINATOR

(a) Network-Processing Modules Calling Hierarchy

CRITICAL PATH
PROCESSOR

NETWORK CONDENSED CRITICAL PATH NETWORK
CONDENSER NETWORK- ALCULATUR  ASSEMBLER

MERGER-

(b) Critical-Path Modules Calling Hierarchy

HEURISTIC
SCHEDULING
PROCESSOR

NETWORK RESOURCE RESOURCE
ASSEMBLER ALLOCATOR LEVELER

(c) Heuristic-Scheduling Modules Calling Hierarchy

Fig. 3.6-1
Project Schedule System within the PLANS Module Library
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techniques. Examples include creating dummy processes and regarding

item-specific resources as pools of the quantity one. Studies

are underway to identify and automate such reformating techniques

that will extend the capabilities provided by project scheduling.

Results will be reported in subsequent documentation.

In a strict sense, the problem characteristics that can be

handled by mathematical programming methods are not limited. It

is the dimensionality of the problem that limits its compatibility

with mathematical programming techniques. All scheduling problems

that can be solved using mathematical programming techniques can

be characterized as small in dimensionality. Such problems may

occur in preliminary scheduling or may represent intentional sim-

plifications made for the purpose of establishing performance

goals or limits. If a problem involves only a small number of

processes, each with a small number of resources, and if few al-

ternatives exist for choosing between resources or processes,

then mathematical programming solution techniques could be ap-

plicable. An increase in generality of any problem model leads

to a very rapid increase in the dimensionality of the correspond-

ing mathematical programming formulation. For example, jobs that

require nonconstant quantities of resources, as illustrated in

Fig. 3.6-3, lead to additional choices (i.e., decision variables)

and, therefore, to an increase in deimensionality.
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Resource
Level
Required

Job With
Nonconstant Resource
Requirements

Fig. 3.6.-3 Example of Nonconstant Resource Demand Profile

It follows that model simplicity is an indirect necessary con-

dition for using mathematical programming techniques for scheduling.

Some problems associated with resource allocation may have

small enough dimensionality to be amenable to mathematical

programming techniques. An example is the development of a

set of compatible combinations of resources such as grouping

payloads that have composite length, weight, and power require-

ments that fall below a set of limits. The PLANS library contains

modules, called COMPATIBILITY SET GENERATOR and FEASIBLE_

PARTITION GENERATOR, which apply to this problem. They are based

on quasi-enumerative techniques and produce mathematically op-

timal solutions.

Other problems with small dimensionality can be solved with

other PLANS mathematical programming modules. Figure 3.6-4 rep-

resents a decision structure that leads either to an appropriate

algorithm choice, or to an indication that mathematical programming

techniques are not applicable. This simple diagram contains

order-of-magnitude decision thresholds concerning dimensionality
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and should assist the problem analyst in determining whether he

should consider using mathematical programming. Secondarily,

the figure is useful in suggesting characteristics of his problem

that prevent the applicability of existing mathematical programming

methods. Such knowledge could lead to minor restructuring of the

problem model to take advantage of logic from the module library.

The use of Fig. 3.6-4 presumes the ability to scope the di-

mensionality of a problem. For estimating purposes, the dimen-

sionality of a problem can be approximated by summing (over all

jobs) the number of time intervals during which each job may

start. The upper bound on the number of intervals during which

a job may start is, of course, the number of intervals in the

scheduling horizon being considered. If a critical path analysis

is performed, the user can determine the exact number of inter-

vals for each job as the number of slack intervals for that job.

The tests for Generalized Upper Bounding structure (abbreviated

GUB in Fig. 3.6-4) refer to a special structure within the tableau

in linear programming that permits the use of this technique.

The GUB structure arises in problems that require the selection

of one, and only one, candidate from each of several groups of

candidates. For example, in a scheduling problem one, and only

one, start time must be chosen for each job (from the groups of

candidate start times for that job). No jobs may be left out and

no jobs may be assigned more than one start time. Another example

where the GUB structure would occur is in assigning personnel with

special skills to a job requiring one electrician, one plumber, one

mason, etc given that sets of personnel with these skills exist.
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4,0 ILLUSTRATIVE EXAMPLES

4.1 ORDERING OF A PRECEDENCE NETWORK

4.1.1 Problem Statement

In Section 2.0 of this volume, the logic of the module ORDER

BY_PREDECESSORS is used to illustrate the PLANS language features.

The same example is repeated here with emphasis placed on how the

data structures are modified as the logic is executed. A simple

four-job network is used for illustration; the network can be

depicted as shown in the sketch.

The problem is simply to generate, from a randomly ordered list

of jobs, an ordered list that has the property that any job will

appear in the ordered list only after all its predecessors have

appeared.

4.1.2 Problem Model

For this simple problem, the input network information is

provided in a tree called $JOBLIST that, initially, has the

structure shown in Stage 1 of Fig. 4.1-1.
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$JOBLIST SNAME LIST $ORDERED LIST

STAGE 1 0 0

JOB A JOB B JOB_C JOB

PREDECESSOR PREDECESSOR PREDECESSOR

JOB C JOB D JOB_B JOBB

STAGE 2 $JOBLIST $NAME_LIST $ORDERED LIST

JOB AJOBC JOB D JOB B-

JOB B

PREDECESSOR PREDECESSOR PREDECESSOR

JOBC JOB JOB B JOB B

Stage 3 
$ORDERED LIST

$JOBLIST $NAMELIST

JOB A JOB B JB

JOB B JOB C

PREDECESSOR PREDECESSOR PREDECESSOR

JOBC JOBD JOBB JOB B

AGE 4 SJOBLIST $NAMELIST $ORDERED_LIST

JOB A JOB_B JOBC JOBD

JOB B JOB C JOB D
PREDECESSOR

PREDECESSOR PREDECESSOR

JOBC JOBD JOB B JOBB

STAGE 5 $JOBLIST $NAME LIST BORDEREDLIST

0
JOBB JOBC JOB D JOBA

JOB B JOB C JOB D JOB A

PREDECESSOR PREDECESSOR PREDECESSOR

JOB B JOB B JOB C JOB D

Fig. 4.1-1 Data Structures IIZustrating ORDER BY PREDECESSORS
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4.1.3 Program Logic

The $JOBLIST tree shown at Stage 1 is passed as a parameter

to the module, ORDER BY PREDECESSORS (see Fig. 4.1-2). Because

$NAME LIST is declared to be local to the module, it is empty each

time the module is entered. $ORDEREDLIST is usually empty, but

may contain jobs that are to precede all jobs in $JOBLIST. This

allows ORDER BY PREDECESSORS to be restartable, in case a re-

quired job was missing from $JOBLIST on a previous call to ORDER_

BY PREDECESSORS. $ORDERED LIST is passed to the module as a

parameter. Its initialization is the responsibility of the call-

ing program.

1 ORDER BY PREDECESSORS: PROCEDURE ($JOBLIST, $ORDEREDLIST)
2 DECLARE $NAMELIST, $TEMP LOCAL
3 LOOP:
4 GRAFT $JOBLIST.FIRST: (ELEMENT.PREDECESSOR SUBSET OF $NAMELIST)
5 AT $TEMP;
6 IF $TEMP IDENTICAL TO $NULL THEN RETURN
7 $NAME LIST (NEXT) = LABEL ($TEMP)
8 GRAFT- $TEMP AT $ORDERED_LIST (NEXT)
9 GO TO LOOP ;

10 END ORDER BY PREDECESSORS

Fig. 4.1-2 PLANS Subroutine for Ordering Jobs by Predecessors

Since $NAME LIST is initially empty, the GRAFT statement at

line 4 searches for the first job in $JOBLIST that has no pre-

decessors (JOB B), removes that job from $JOBLIST, and places it

at $TEMP. Because a job was found (i.e., because $TEMP is not

null), line 6 fails to cause a return. The name of the job found

is, therefore, added to $ORDEREDLIST. The GO TO statement at

line 9 then starts the process over again at LOOP. The tree

status at this point is shown in Fig. 4.1-1, Stage 2.
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The GRAFT statement at line 4 again searches for the first job

in $JOBLIST whose predecessors are a subset of $NAMELIST. In

this case, $NAMELIST contains only the name, JOB_B. Thus, the

first job (JOB_C) in $JOBLIST that either has no predecessors or

has only JOB B as a predecessor will satisfy the condition and be

removed from $JOBLIST and placed at $TEMP. The exit test fails,

the name JOBC is added to $NAME_LIST, and the job itself is

removed from $TEMP and added to $ORDERED_LIST. The tree status

at this point is shown in Fig. 4.1-1, Stage 3. Note that the

entire substructure representing information about JOB_C is now

in $ORDERED_LIST.

The third pass starting at LOOP transfers JOBD to $ORDERED_

LIST because its only predecessor, JOBB, is named in $NAMELIST.

The tree status at this point is shown in Stage 4.

Now that both JOB C and JOB D are named in $NAMELIST, the

conditional GRAFT statement is satisfied by JOB A, which is there-

fore moved to $ORDEREDLIST, yielding the status shown in Stage 5.

Finally, the GRAFT statement at line 4 fails to find in

$JOBLIST (which is empty) a new job whose predecessors are in

$NAME LIST. A null node is, therefore, placed at $TEMP, causing

the exit test (line 6) to succeed. Note that the module would be

exited if the conditional GRAFT statement failed even if $JOBLIST

were not empty. This condition would indicate a cycle or a miss-

ing job in $JOBLIST. It is the responsibility of the calling

program to test for this condition if such a test is considered

necessary.
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4.2 PAYLOAD GROUPING

4.2.1 Problem Statement

The problem is to find a composite payload whose character-

istics satisfy Shuttle Orbiter limits. For simplicity, we restrict

the characteristics to be those that can be evaluated by summing

the properties of the individual payload (e.g., length, weight, etc).

Any combination of payloads that satisfies all the Shuttle limits

is considered a candidate for a mission. The best composite pay-

load is to be selected by an existing routine. Therefore, the

logic to be written must find all feasible combinations and pass

those combinations to the selection routine. A composite payload

could consist of a single payload, a pair of payloads, a triplet

of payloads, etc, i.e. combinations of order 1i, 2, ... up to a

prescribed maximum order. For example, payload 12 could, itself,

be a feasible composite payload as could the triplet consisting

of payload 12, 5, and 17.

'.2.2 Problem Model

This problem is not, in the strictest sense of the word, a

scheduling problem because no assignment of times to the activ-

ities is involved. However, neither PLANS nor the library modules

have been designed with such a limited view of scheduling in mind.

This problem deals with the characteristics of resources that can

be described within the $RESOURCE tree structure, as:

$RESOURCE
SHUTTLE WITH KICK STAGE

LIMIT
BAY LENGTH - 32
WEIGHT - 4400
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PAYLOAD
ASOO01

CHARACTERISTICS
LENGTH - 13
WEIGHT - 1807

PHOO7

The information needed to generate the candidate-feasible

combinations and to call the payload selection routine can be

arranged within the $OBJECTIVES structure as shown below:

$OBJECTIVE
FIG OF MERIT

T - MINIMIZE
¢ - NUMBER

CONSTRAINT
MAX IN COMBO - 3

4.2.3 Program Logic

The logic consists of nested loops of PLANS code. The inner-

most loop sums one characteristic over all payloads in a par-

ticular combination. This summation is repeated for each char-

acteristic as the next higher loop is executed. The combination

loop, a unique capability of PLANS, generates each payload com-

bination of order K, where K ranges from 1 to the value of MAX

IN_COMBO in the outermost loop. The PLANS code is shown below.

1 FINDBESTI_COMPOITF PAYLOAO: )PROCEDURE ($OBJECTIVES, SHESOURCE) I
2 /* GENERATE ALL INTERNALLY FE.SIHIE PAYLOAD COMBINATIONS. 4/

3 DO K = 1 Tn 'O4JFCTIVFS.CONSTWAINT.MAX_INCOMRO ;
4 DO FOR ALL CO;HHINATTONS OF WRESnURCF.PAYLOAD TAKEN K AT A TIME $
5 00 J = I Ti NUN;RFR( PFSillwCF. SHITTLF_WITH_KICK_STAGE(1).LIMIT) I
6 $SUM(J) = 0'
7 O0 L = ] TO K
8 $SUMrJ)= SUM(J) + *CrMRINATION(L).CHARACTERTSTIC(,J) i
9 FNU .

10 IF SULM(J) > SWFSOU CF.SHIJTTLF IWTHKICKSTAGt(1).LIMIT(J)
11 THFN GO TO ENI UCOROLnnOP 1
12 END ;
13 iFEASIRLF.SET(NFXT) = SCOMHINATION
14 GRAFT $SUM AT SFEASIRLE-SET(LAST).SUMS 1
15 ENUDCOMBO-L OOP I EN) d from
16 END I Reproduced from
17 CALL RESTSET(S0BJECTIVES,$FFASIRLESFT,$REST) ; best available copy.
18 WRITE %HEST :
19 END FIND BESTCu-.POSITFPAYLOAD 1
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The code presented assumes that the subroutine BESTSET has

the capability to interpret the information and structure of

$OBJECTIVES.

Notice should be taken of the use of the special indices,

NEXT and LAST, in statements 13 and 14. These statements add a

new combination of payloads to $FEASIBLE SET. Because PLANS is

a tree manipulation language, the structure of the data trees

actually changes during program execution.

As the combination loop is executed, the structure $COMBINATION

is maintained. $COMBINATION is a special tree that does not

actually have subnodes of its own. Instead, $COMBINATION is

maintained, with a set of pointers, in the already existing

structure from which the combinations are to be formed ($RESOURCE.

PAYLOAD). This economizes on time and storage by avoiding un-

necessary duplication of data. For a second-order combination,

it might look like:

$COMBINATION
$COMBINATION

AS001
CHARACTERISTIC

LENGTH - 13
WEIGHT - 1807

PLO15
CHARACTERISTIC CHARACTERISTIC CHARACTERISTIC

LENGTH - 27
WEIGHT - 3645

LENGTH WEIGHT LENGTH WEIGHT

13 1807 27 3645

169



where both payload designators are first order subnodes of

$COMBINATION. If this combination were feasible, the statement

$FEASIBLE SET (NEXT) = $COMBINATION would cause the following

modification of $FEASIBLE SET.

Structure prior to Structure after

Statement execution Statement execution

$FEASIBLE SET
$FEASIBLESET

AS001
or CHARACTERISTIC

LENGTH - 13
WEIGHT - 1807

$FEASIBLE SET PLO15
CHARACTERISTIC

LENGTH - 27
WEIGHT - 3645

or

$FEASIBLE SET

AS001 PL15

CHARACTERISTIC CHARACTERISTIC

LENGTH WEIGHT LENGTH WEIGHT

13 1807 27 3645
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The next statement, GRAFT $SUM AT $FEASIBLE_SET(LAST).SUMS results

in:

Structure prior to Structure after
Statement execution Statement execution

$SUM
S- 40 $SUM
S- 5452

or
or

$SUM
$SUM

0

40 5452

SFEASIBLE_SET $FEASIBLE SET

AS001 AS001
CHARACTERISTIC CHARACTERISTIC

LENGTH - 13 LENGTH - 13
WEIGHT - 1807 WEIGHT - 1807

PLO15 PLO15
CHARACTERISTIC CHARACTERISTIC

LENGTH - 27 LENGTH - 27
WEIGHT - 3645 WEIGHT - 3645

or SUMS

$FEASIBLE SET t - 40
t - 5452

or

$FEASIBLESET

AS001 PL15

CHARACTERISTIC CHARACTERISTIC

AS001 PL015 Sums
LENGTH WEIGHT LENGTH WEIGHT

13 1807 27 3645 CHARACTERISTIC CHARACTERISTIC

40 5452

LENGTH WEIGHT LENGTH WEIGHT

13 1807 27 3645
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Note that because the assignment statement 13 builds a new node

in $FEASIBLE_SET, the GRAFT statement (14) must refer to the LAST

(not NEXT) node if the SUMS are to apply to the correct combina-

tion. If the code had been incorrectly written as:

$FEASIBLE_SET(NEXT) = $COMBINATION; GRAFT $SUM AT $FEASIBLE SET

(NEXT).SUMS;

the structure of $FEASIBLE SET would have been:

$FEASIBLE SET

AS001
CHARACTERISTIC

LENGTH - 13
WEIGHT - 1807

PLO 15
CHARACTERISTIC Incorrect code causes the

LENGTH - 27 loss of the association of
WEIGHT - 3645 these data.

SUMS
S- 40
- 5452

4.2.4 Changes to Problem Scope

It can be recognized that the code is independent of the number

of payloads in the problem, the number of characteristics being

considered, and the maximum number of individual payloads allow-

able in any combination. Furthermore, it is possible to write the

BESTSET logic in PLANS to interpret tree data in $OBJECTIVES so

that changes in the problem objectives are easily accommodated.

PLANS permits coding of this routine to be even less sensi-

tive to problem changes than the code illustrated. Suppose, for

example, the power requirements and weights of instruments were
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to be summed to check for feasibility as a part of a sortie

module design. The appearance of the label PAYLOAD in the code

is therefore restrictive. The problem would have been avoided

by placing the resource name to be considered in a special place

in the data structure such as in $OBJECTIVES as follows:

$OBJECTIVES
FIG OF MERIT

¢ - MINIMIZE
S- NUMBER

CONSTRAINT
MAX IN COMBO - 3

PROBLEM RESOURCE - PAYLOAD

The statements in the illustrated coding that contain the label

PAYLOAD could have been coded with an indirect reference. For

example:

DO FOR ALL COMBINATIONS OF
$RESOURCE.#($OBJECTIVES.PROBLEMRESOURCE)
TAKEN K AT A TIME ;

Thus to change from payloads to instruments would be accomplished

by adding instruments to $RESOURCE and changing the value of the

PROBLEM RESOURCE node of $OBJECTIVES.

4.3 PROJECT SCHEDULING

4.3.1 Problem Statement

A project consists of 11 activities, each requiring resources

from three different resource pools. To be specific, consider

each pool to be a manpower pool, containing six men with a common

skill. The activities in the project are related to each other

by simple precedence relations; i.e., certain activities cannot

begin before others are finished. The objective of the schedule

is to find the earliest time that all jobs can be completed with-

out using more from any pool than are available.
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4.3.2 Problem Model

This problem is precisely the basic project scheduling model.

The characteristics that make it so are:

1) Relationships between jobs (temporal relations) are simple

predecessors;

2) Resources required are pooled resources with no special char-

acteristics that are altered after an assignment. (Pooled

resources with implicit descriptors only, i.e., with no

explicit descriptors).

The temporal relations of the problem can be illustrated by a

network diagram. The diagram of Fig. 4.3-1 shows the job dura-

tion below each job and the quantitites of required resources

from each of the three pools above each job.

(3,2,1) (3,1,2) (3,2,3)

3 (4,3,1) 6 (2,0,3) 4 (4,1,0) (5,4,2)

START (1,1 ) 2 3 FINIS

3 F

(4,0,2) (3,1,1) (2,2,2)

5 4 5

Fig. 4.3-1 Network Diagram for Project Scheduling

174



The standard data structures presented previously accommodate

project scheduling information. Relations between jobs are in-

cluded in the structure $OPSEQ which, for this problem, would

look like:

$OPSEQ
PROJECT - A
A

TYPE - PROCESS
B

TYPE - PROCESS
C

TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
¢ - A

D
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

E
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

F
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

G
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
¢ - B

H
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

IF

TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
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J
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

K
TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR

The relationships between jobs and their resources are described

in the $PROCESS tree. For this project scheduling problem,

$PROCESS looks like the following:

$PROCESS
A

REQUIRED RESOURCES
MANPOWER

LABOR 1

DESCRIPTORS

INITIAL
QUANTITY - 3

LABOR 2

DESCRIPTORS

INITIAL
QUANTITY - 2

LABOR 3

DESCRIPTORS
INITIAL

QUANTITY - 1
DURATION - 3

B
REQUIRED RESOURCES

MANPOWER
LABOR 1

DESCRIPTORS

INITIAL
QUANTITY - 4
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LABOR 3
DESCRIPTORS

INITIAL
QUANTITY - 2

DURATION - 5

The descriptions of the resources modeled in the system are de-

fined in the $RESOURCE tree. For this problem, $RESOURCE would

include:

$RESOURCE
MANPOWER

LABOR 1
CLASS - POOL
INITIAL PROFILE

NORMAL

QUANTITY-6
LABOR 2

CLASS - POOL
INITIAL PROFILE

NORMAL

QUANTITY-6
LABOR 3

CLASS - POOL
INITIAL PROFILE

NORMAL

QUANTITY-6

The fact that there is a single occurrence of the operation

sequence PROJECT A, is modeled simply by constructing $OBJECTIVE

as shown below. The PROBLEM RESOURCE node identifies MANPOWER

as the critical resource to be considered in this problem. This

allows the programmer to use indirect references, thus making

his code more generally applicable.
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$OBJECTIVE
OPSEQ

PROJECT A
TYPE - OPSEQ

PROBLEM SESOURCE - MANPOWER

4.3.3 Program Logic

Because this problem is purely a project scheduling problem,

the project scheduling routines from the module library apply

directly. The recommended method of solution for this example

would be to use the time-progressive heuristic of the RESOURCE

ALLOCATOR module. Volume III of this report contains the de-

tailed functional specifications for this module, and the solu-

tion for this example problem that results from the application

of the heuristic procedures is specified in RESOURCE ALLOCATOR.

The PLANS program code to solve this example merely calls the

specified library module called RESOURCEALLOCATOR. Therefore,

the code is simply:

PROJEC I _SCHFOUL IN,: PROCE!Uw ;I
REAU !0PS RkCESS R*L ,EsoRJCTIVES INTE(bEk, ATEND I

CALL bFNFRAltJ(OSET(i0JCTIVFc 0()PSF( $PHOCESSIINIE(,FPSJORSET) I
O0 1=1 TO N Eqt ($WFSOUPCE.#(STYPE)) 1

CALL RES(jURCF_PROFILF (61'FSOUPCF,$TYPE
LARFL(%R SOUPrE.#($TYPE) ()),STAH TENDO,$POFILE)

uNAFT SPI OFIIF T Pr OF ILE SS( E XT) 4

CALL MESOU.CL_AI LOCAT(Ik bJ:)HsET. PRO)F1 I FS.SC.HE)ULL) I 43WRIfE ,SCHELDUr.E I
END PNUJ'CTSCH .,ULINr I

4.3.4 Alternative Approach

An alternative to the time-progressive heuristic scheduling

strategy, used within the RESOURCE ALLOCATOR module, is a time-

transcendent strategy. A single time-transcendent strategy with

sufficiently general applicability cannot be specified and there-

fore is not provided in the module library. However, the PLANS
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code for constructing such a solution strategy is quite simple.

To illustrate this, consider the logic of Fig. 4.3-2, which is

a time-transcendent logic. For the example problem presented,

the program shown in Fig. 4.3-3 could be written to implement

the logic on the flow chart.

4.3.5 Changes to Problem Scope

It should be noted that this program is independent of the

total number of jobs, the definition of their predecessor rela-

tionships, the number of resource pools, the problem resource

type, and the time increment. That is, in order to vary these

problem characteristics, the programmer needs only to change the

input data. However, throughout this example it has been as-

sumed that $JOBSET contains only one SUBNET ID subnode. This

will be the case for this particular example problem because

there is only one subnode of $OBJECTIVES.OPSEQ; but, generally,

there will be several such subnodes. This problem can be elim-

inated by inserting the following block of code after the CALL

GENERATE_JOBSET statement near the beginning of the program.

DO I11 TO NUMBER ($JOBSET);
DO J=1 TO NUMBER ($JOBSET(I));

GRAFT $JOBSET(I)(J). AT $JOBLIST(NEXT);
END;

END;
PRUNE $JOBSET;

This code eliminates all of the SUBNETID nodes found in $JOBSET.

It creates a new data tree called $JOBLIST that contains all of

the "job" nodes one level below the root node. Therefore, in

the remainder of the program all occurrences of $JOBSET(1) should

be replaced with $JOBLIST.
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Read Input Data

Apply Critical Path Method Generating

1) Earliest start times

2) Latest start times

3) Total slack

Order the list of jobs by

1) Total slack

2) Earliest start times

3) Duration

Check the job list.
If any job occurs before its
predecessors, move its
predecessors to a position
immediately above the job in
the list. The predecessors
should be moved in order of
smallest

1) Latest finish time

2) Total slack

3) Duration

Select the first job in the ordered list

Select next job in list

No

Select the earliest start time Yes A

for the current job STOP Jobs

Model Interface

current Schedule the current job
Increment No job Yes at the desired time and
time resource-feasible write the associated

at this resource assignments
time?

Fig. 4. 3-2

Flow Logic for Time Transcendent Project Scheduling Algorithm
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/9 THIIS PROGRAM USES A T1IAF-IRANSCENDFNT STRATEGY To '30LVF THE 0

/* HASIC P.~OJiCT SCHEO)IICGC WROHLF~i.

PROJECr...SCHEC)ULIJG PROCEnuPiw ;
READ) iOAJECTIVF%9 %()PSE)). fPPOCFSS9 SNESOURCE9 OELIA..TIME, INTEG~ERI

CALL 6ENEI3AfE JOMSFT(C"ONJC)IVFqospSEi,%PwtlCL.SSINTEGtP, $JnHSET)

CALL CNJTTCAL...PATHCAI.LUL.A1ONC~s.COR-,FT) 9
()kDLR %~jORSFC nC dY -FLI',AT.TO1A., -START.EARLY9 -JONHjIITERVAL.FNC I

NUM"Ek-OF-JOUS =NOIfF'CIJ'INSET(lCC 9

THIS LOOP O~iWQS THE JOk-S ky DOET.,ECLSSORS. wITHIN EACH GHOUP OF

PREDLCEsquws Tn. f JOHS AHF PHr TtJ ASCENTING ORDER ACCnpnING TO LATFrT
FINISH TIMFS, T(ITAL SLk.CK9 AN)) OnCNAION. 9

DO 1=1 TO) NUE .. DJ()F'_~b
SCA NJUNSE T C

IF '% jopSi :TC1CCI) .TI,1)0dL_F.ATINS.PREDECESSOkS SURSET OF
SN.AMFLIqT

THEM $NAMFLIST(NEXI) =LAF4FL(%JO8SFTC (I(j

ELSE ()U I
IO )U K-1+ TO NI'..HOF.JOtS *

IF LAA11,j.J)SFT(IC (n.CC SUBSEI OF
%jO-SFIi) CT) .T 'POAL.HELATIO1NS.PRErDECFSSORS

THEN rPAFr i~jfOPSFT(1) (K) AT STEMP(.JEATC I

F.NI) I
OHNLR bTFMP -Y VJiTq.LAT.. FLOAT.TOTAL. :)URATION

La) L=I To NU~mMl r (STF%0) 3

6wAFT TANSiw-T %rE'mp(jC AS $JO'3SEr(i) (IC

ENDI
(vu TO SCANJ(JMSF I

END 00

PRUNE SNAMLLII.T I %TYPF = k3J9*CTTVES.PPOLEM-..ES0URCF I

THIS LOOP W)L'S THROUGH THr. 10-4 !JTST AND) SCHED~ULES tACH J08 AS -SOn

AS A TIME IS DF.rpmTNEiO I'1 whlr.H ALL OF ITS kETJUIHLI) RESOURCES APF
AVAILAHLC. */

DO 121 TO 40LM-EILP-OF-..JOHS ;TImE = ;JO8ISFT(I)(J).STAR.T.FARLY
CH~ECK-POESOURCE..5,IAILARILI C Y

DO K=l Tu .,UMHLR(4 tS(CL'Cf .tt(TYPF)

CALL RK1U'CCF-.PP-OF ILt ( dRE~4zCF., jTYPE.,
C.A iFLC6RISOtINCE.t(%TYi'EC (N). TIME- TIME, SPROFTLFC I

IF $PR(JILEI-V-0,SF(1C .U0rITITY+

Cl).*INITIAL.QUANTITY
ONCE (,r.~t( TY-F) CNK) T NITIAL_.PROF ILE. NORMAL(I) .01JANTITY

THtrN DO ; T114E = TIME + nELTA..TImE;

GO TO CHEC nE SUDD0FAVAILAHILITY I

ENE) I~ f C

NOw THE 10U4 CAN HE SCHEDI.EI RY CilflATIN(O THE ASSINNMENT INEOR 27QN&Je
FOUNU IN ttHE IWEE, 19wfSOUHCE */ *

IASSIGNI;JT..UNIT.INTFPVFL.STAPT = TIME ;4

$ASS I(OkMFNT_1JN IT. I OJ "VAL. ENr) TIME + %JDHSET(I)(JC.U!RATION I

00 L=1 TO -UMHER(P C~SfJ!J'C. *0CTYP )C )
N~fnD-AIT = inHS.T~lCJC.R4FQUINEO...R)SOURCES.CM*TYPE) CL) Cl).

IFN F .L AMT =O ETl 0 ESCRIPTORS(l.I'TIAL.QUANTTTY I

THEN 00) ;
jASSIr,NpNT..NIT.nESCIPOPl.INITIAL.UUIANTITY

NEEOEDAMT I

CALL wikI tE ASSIONMETIT CSASSIGN.ENT...NI I
;RESODRCE.*IC$TYPE)(LC.ASSIGNM.NTC I

ENO I
ENOI

END I

THE ENTIRE !)CHEI)DLE IS PRINTE)) OUT r3Y THE LOOP BELUW.
ALL RESOOHCI:S AND T4FIR SPECIFTC jok ASSIGNMENTS ARE OISPLAYED. 0

00 1=1 To NUM4WERC$RESOORCE.#C5TYPEC))
$NAME = LAt5ELC1QFS)UTCE..h($TyPF) (1) C I
NRITF $NAME. , nFSOURCE.PC,$TYPF)(IC.ASSIGNMENT
ENO) I

END PHUJECT..SCHE'ULIN- I

Fig. 4.3-3 PLANS Code f'or Time Transcendent Pro~?ect
Scheduliing Aligori thins
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4.4 FLIGHT ASSIGNMENT

4.4.1 Problem Statement

The problem to be solved is to find launch dates for a set

of payloads, each of which has a launch window; i.e., an interval

during which it must be launched if it is launched at all. Re-

sources that are required to launch the payloads are specified

by quantity and type. For example, each launch requires one

orbiter, two solid rocket motors, three crewmen, etc. Since the

resources may be reused after a flight, the scheduling must as-

sign the cycling resources in a way that permits as many payloads

to be launched as possible.

4.4.2 Problem Model

All resources for the problem can be modeled as item-specific

resources. That is, each specific orbiter, crewman, launch pad,

etc should be given a separate identity so that each can be'

tracked through the launch and turnaround processes separately.

It is sufficient in this example to define a single process,

FLIGHT, with the appropriate required resources as illustrated

below:

$PROCESS
FLIGHT

REQUIRED RESOURCES
PAYLOAD

INTERVAL
START - 0
END - 21
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ORBITER

INTERVAL
START - 0
END - 21

SRM

INTERVAL
START - 0
END - 14

DESCRIPTORS

INITIAL
QUANTITY - 2

Each of the resource types appearing in $PROCESS should ap-

pear in the $RESOURCE tree with the specific resources under each

type. In addition, the payloads and their windows should appear

in $RESOURCE. At input, $RESOURCE would have the structure:

$RESOURCE
ORBITER

ORBITER 02
ORBITER 05
ORBITER 06

SRM.
SRM S190
SRM A06

PAYLOAD
PAYLOAD 07

WINDOW
START - 217
END - 238

PAYLOAD 09
WINDOW

START - 240
END - 271
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4.4.3 Program Logic

In the program, illustrated in Figure 4.4-1, the module

NEXTSET performs the function of finding the next time after a

given input time that a complete set of required resources of

the correct types and quantities will be available. It examines

the assignments in $RESOURCE to find this time. In addition, the

module returns the identifiers of the specific resources that

correspond to this time. Thus, NEXTSET provides the fundamental

logic needed to build a time-progressive scheduling heuristic.

(See Volume III, Section 2.4.12 for a complete functional descrip-

tion of the NEXTSET module).

FLIGHT.ASSIGNMENTI PROCEDURE (SRESOURCEv SPROCESS) I
ORDER SRESOURCE*PAYLOAD BY -ELEMENT.WINDOW.START#

-ELEMENT.WINDOW.END I
SFLIGHT * SPROCESS.FLIGHT I
SFLIGHT.JO .INTERVAL.START 0 0 5
GRAFT 5FLIGHT.DURATION AT SFLIGHT.JOB.INTERVAL.END I

BUILD.SCHEOULE.UNITI
/*

THE MODULE 'NEXTSET
0 
MAKES ALL OF THE RESOURCE ASSIGNMENTS FOR THF

NEXT FLIGHT AND CREATES A TREE (SNEXTSET) WHICH IS READY TO BE
PLACED IN SSCHEDULE. HERE IT IS ASSUMED THAT THE PAYLOAD WITH THE
NEAREST WINDOW OPENING TIME WILL BE USED. */

CALL NEXTSET(%FLIGHToSRESOURCE.PAYLOAD(1).WINOOW.START
SRESOURCE.PAYLOAD(1).WINDOW.ENDSRESOURCESNEATSETSWINOOWS) I

IF SNEXTSET IDENTICAL TO SNULL THEN GO0 TO OUTPUT I
START.TIME a sNEXTSET.JOS.INTERVAL.START I

/*
THE CODE BELOW DETERMINES IF A DIFFERENT PAYLOAD SHOULD BE SURSTI-
TUTED ON THIS FLIGHT DUE TO ITS NEARER WINDOW CLOSING TIME. 0/

SCANDIDATES - SRESOURCE.PAYLOAD.ALLI(ELEMENT.WINDOW.START <m
START.TIME & ELEMENT.WINDOW.END > STARTTIME) I

IF $CANDIDATES IDENTICAL TO SNULL
THEN $KEEP * LABEL(SRESOURCE.PAYLOAD(1)) I
ELSE DO I N - INFINITY I

FIND.MINIMUMEND.TIMEI
GRAFT SCANDIDATES.FIRSTs(ELEMENT.WINDOW.ENO < N) AT STEMP I
IF STEMP NOT IDENTICAL TO SNULL

THEN DO I N N STEMP.WINDOW.END I SKEEP - LABEL(STEMP) I
GO TO FIND.MINIMUM.END.TIME I

END I
END I

/*
SINCE THE PAYLOAD HAS BEEN CHOSEN@ THE NEXT FLIGHT CAN BE SCHEDULED
AFTER UPDATING THE OASSIGNMENTo INFORMATION IN SRESOURCE. */
LABEL(SNEXTSET.RESOURCES.PAYLOAD(l) * LABEL(SKEEP) I
GRAFT SRESOURCE.PAYLOAD.#LABEL(SKEEP) AT SSCHEDULED.PAYLOADS(NEXT) I
GRAFT SNEXTSET AT SJOB(I) I
CALL UPDATE.RESOURCE(SJOBosRESOURCE) I
GRAFT SJOB(I) AT SSCHEDULEINEXT) I
GO TO BUILDSCHEDULEUNIT I

OUTPUTI WRITE SCHEDULE I
/*

SINCE THIS PROGRAM MODIFIES THF STRUCTURE OF SRESOURCE, THE LOOP
BELOW IS NEEDED TO RESTORE IT TO ITS ORIGINAL FORM. 0/

DO I=1 TO NUMRERISSCHEDULE.PAYLOADS) I
GRAFT INSERT SSCHEDULED.PAYLOADS(1) AT SRESOURCE.PAYLOAD(1) I
END I

STOP I
END FLIGHTASSIGNMENT I .

Fig. 4.4-1 Example of PLANS Code for FLIGHT 00

ASSIGNMENT AZ gori thm
184



After the next flight time and set of resources are deter-

mined by NEXTSET, a choice of payloads may exist for that flight.

The logic illustrated finds all the payloads whose windows con-

tain the next flight time and then chooses the one whose window

closes the soonest after the flight time.

Finally, the logic updates $RESOURCE by calling the module

UPDATE RESOURCE and adds a new flight to the schedule being

stored in $SCHEDULE. The detailed specifications for UPDATE_

RESOURCE are found in Volume III, Section 2.4.16.

4.4.4 Changes to Problem Scope

The code illustrated applies to any combination of resources

in any quantitites properly defined in $PROCESS and $RESOURCE.

For example, new cycling resources could be added; that is,

vertical assembly building, flight control centers, etc could

be added to the flight resources without changing the code.

Furthermore, the process called FLIGHT need not require all of

its resources for the same time intervals; the diagram below

illustrates a resource set that is accommodated merely by chang-

ing the $PROCESS data without changing the illustrated code.

ORBITER (1) I

CREWMEN (4)

RECOVERY SHIP (2) I--I I--4

SRMS (2)

LAUNCH PAD (1)

REFURBISHMENT
FACILITY (1)

TIME

185



Another illustration of a change in the problem scope that

could be accommodated without a coding change concerns the model-

ing of resources that undergo descriptor changes as a result of

being assigned. Suppose that the process FLIGHT were defined to

require crewmen with no previous flight experience. $PROCESS

might look like:

$PROCESS
FLIGHT

REQUIRED RESOURCES
CREWMAN

DESCRIPTORS

INITIAL
EXPERIENCE - NONE

FINAL
EXPERIENCE - VET

The appearance of the intial descriptor, EXPERIENCE, with a

value NONE would cause the module NEXTSET to look only for crew-

men with no experience. After being assigned to a flight, a crew-

man would have a value VET for EXPERIENCE as a result of the

action of the module UPDATE RESOURCE and thus, would not be chosen

again. Thus, without changing the code, we have introduced non-

recycling resources into the system. In the terminology of the

operations model, this has been accomplished by generalizing

item-specific resources, with implicit descriptors only, to item-

specific resources with explicit descriptors. Note that explicit

descriptors have the distinguishing property of being changed

by a process and retaining their new value after the process has

terminated.
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